This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179328 #18 Mar 18 2022 10:27:10 %S A179328 3,23,139,293,1129,2477,8467,30593,81463,85933,190409,404597,535399, %T A179328 840353,1100977,2127163,4640599,6613631,6958667,10343761,24120233, %U A179328 49269581,83751121,101649649,166726367,273469741,310845683,568951459 %N A179328 a(n) is the smallest prime q > a(n-1) such that, for the previous prime p and the following prime r, the fraction (q-p)/(r-q) has denominator prime(n) (or 0, if such a prime does not exist). %C A179328 Conjecture: a(n) > 0 for all n. %p A179328 with(numtheory): %p A179328 a:= proc(n) option remember; local k, p, q, r, pn; %p A179328 pn:= ithprime(n); %p A179328 for k from `if`(n=1, 1, pi(a(n-1))) do %p A179328 p:= ithprime(k); %p A179328 q:= ithprime(k+1); %p A179328 r:= ithprime(k+2); %p A179328 if denom((q-p)/(r-q)) = pn then break fi %p A179328 od; q %p A179328 end: %p A179328 seq(a(n), n=1..10); # _Alois P. Heinz_, Jan 06 2011 %t A179328 a[n_] := a[n] = Module[{k, p, q, r, pn}, %t A179328 pn = Prime[n]; %t A179328 For[k = If[n == 1, 1, PrimePi[a[n - 1]]], True, k++, %t A179328 p = Prime[k]; %t A179328 q = Prime[k + 1]; %t A179328 r = Prime[k + 2]; %t A179328 If [Denominator[(q - p)/(r - q)] == pn, Break[]]]; q]; %t A179328 Table[a[n], {n, 1, 10}] (* _Jean-François Alcover_, Mar 18 2022, after _Alois P. Heinz_ *) %Y A179328 Cf. A168253, A179210, A179234, A179240, A179256, A001223 %K A179328 nonn %O A179328 1,1 %A A179328 _Vladimir Shevelev_, Jan 06 2011 %E A179328 More terms from _Alois P. Heinz_, Jan 06 2011