cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179334 Squares that are the sum of three positive Fibonacci numbers.

This page as a plain text file.
%I A179334 #44 Aug 21 2025 10:00:28
%S A179334 4,9,16,25,36,49,64,81,100,144,256,289,324,400,529,576,625,1024,1089,
%T A179334 1225,1369,1600,2209,3249,7396,12544,15129,19321,46656,103684,710649,
%U A179334 1347921,2178576,4870849,14930496,24990001,33385284,228826129,1568397609,10749957124
%N A179334 Squares that are the sum of three positive Fibonacci numbers.
%C A179334 There are infinitely many such numbers, because L_{2n}^2 = F_{4n+1} + F_{4n-1} + F_3 (observation of Ingrid Vukusic). - _Jeffrey Shallit_, Aug 19 2025
%C A179334 Squares k > 1 such that A007895(k) <= 3. - _Robert Israel_, Aug 20 2025
%H A179334 Robert Israel, <a href="/A179334/b179334.txt">Table of n, a(n) for n = 1..100</a>
%e A179334 a(5) = 36 = 1+1+34 = Fib(1)+Fib(2)+Fib(9).
%p A179334 phi:= 1/2 + sqrt(5)/2:
%p A179334 fib:= combinat:-fibonacci:
%p A179334 invfib := proc(x::posint)
%p A179334   local q, n;
%p A179334   q:= evalf((ln(x+1/2) + ln(5)/2)/ln(phi));
%p A179334   n:= floor(q);
%p A179334   if fib(n) <= x then
%p A179334     while fib(n+1) <= x do
%p A179334       n := n+1
%p A179334     end do
%p A179334   else
%p A179334     while fib(n) > x do
%p A179334       n := n-1
%p A179334     end do
%p A179334   end if;
%p A179334   n
%p A179334 end:
%p A179334 g:= proc(n)  local ct,x,y,R;
%p A179334   ct:= 0; x:= n^2; R:=NULL;
%p A179334   while x > 0 do
%p A179334     y:= invfib(x);
%p A179334     ct:= ct+1;
%p A179334     if ct = 4 then return [false, max(n+1,isqrt(fib(R[1])+fib(R[2]) + fib(R[3]+1)))]  fi;
%p A179334     R:= R, y;
%p A179334     x:= x - fib(y)
%p A179334   od;
%p A179334   if ct < 3 then [true,n+1] else [true, max(n+1,isqrt(fib(R[1])+fib(R[2])+fib(R[3]+1)))] fi
%p A179334 end proc:
%p A179334 R:= NULL: count:= 0:
%p A179334 n:= 2:
%p A179334 while count < 40 do
%p A179334   V:= g(n);
%p A179334   if V[1] then R:= R, n^2; count:= count+1; fi;
%p A179334   n:= V[2];
%p A179334 od:
%p A179334 R; # _Robert Israel_, Aug 20 2025
%t A179334 f=Fibonacci[Range[40]]; Select[Union[Flatten[Outer[Plus, f, f, f]]], #<f[[-1]]+2 && IntegerQ[Sqrt[#]] &]
%t A179334 Select[Union[Total/@Tuples[Fibonacci[Range[50]],3]],IntegerQ[Sqrt[ #]]&] (* _Harvey P. Dale_, Apr 29 2015 *)
%Y A179334 Cf. A000032, A000045, A007895, A081069, A111378, A160238.
%K A179334 nonn
%O A179334 1,1
%A A179334 _Carmine Suriano_, Jan 12 2011