This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179334 #44 Aug 21 2025 10:00:28 %S A179334 4,9,16,25,36,49,64,81,100,144,256,289,324,400,529,576,625,1024,1089, %T A179334 1225,1369,1600,2209,3249,7396,12544,15129,19321,46656,103684,710649, %U A179334 1347921,2178576,4870849,14930496,24990001,33385284,228826129,1568397609,10749957124 %N A179334 Squares that are the sum of three positive Fibonacci numbers. %C A179334 There are infinitely many such numbers, because L_{2n}^2 = F_{4n+1} + F_{4n-1} + F_3 (observation of Ingrid Vukusic). - _Jeffrey Shallit_, Aug 19 2025 %C A179334 Squares k > 1 such that A007895(k) <= 3. - _Robert Israel_, Aug 20 2025 %H A179334 Robert Israel, <a href="/A179334/b179334.txt">Table of n, a(n) for n = 1..100</a> %e A179334 a(5) = 36 = 1+1+34 = Fib(1)+Fib(2)+Fib(9). %p A179334 phi:= 1/2 + sqrt(5)/2: %p A179334 fib:= combinat:-fibonacci: %p A179334 invfib := proc(x::posint) %p A179334 local q, n; %p A179334 q:= evalf((ln(x+1/2) + ln(5)/2)/ln(phi)); %p A179334 n:= floor(q); %p A179334 if fib(n) <= x then %p A179334 while fib(n+1) <= x do %p A179334 n := n+1 %p A179334 end do %p A179334 else %p A179334 while fib(n) > x do %p A179334 n := n-1 %p A179334 end do %p A179334 end if; %p A179334 n %p A179334 end: %p A179334 g:= proc(n) local ct,x,y,R; %p A179334 ct:= 0; x:= n^2; R:=NULL; %p A179334 while x > 0 do %p A179334 y:= invfib(x); %p A179334 ct:= ct+1; %p A179334 if ct = 4 then return [false, max(n+1,isqrt(fib(R[1])+fib(R[2]) + fib(R[3]+1)))] fi; %p A179334 R:= R, y; %p A179334 x:= x - fib(y) %p A179334 od; %p A179334 if ct < 3 then [true,n+1] else [true, max(n+1,isqrt(fib(R[1])+fib(R[2])+fib(R[3]+1)))] fi %p A179334 end proc: %p A179334 R:= NULL: count:= 0: %p A179334 n:= 2: %p A179334 while count < 40 do %p A179334 V:= g(n); %p A179334 if V[1] then R:= R, n^2; count:= count+1; fi; %p A179334 n:= V[2]; %p A179334 od: %p A179334 R; # _Robert Israel_, Aug 20 2025 %t A179334 f=Fibonacci[Range[40]]; Select[Union[Flatten[Outer[Plus, f, f, f]]], #<f[[-1]]+2 && IntegerQ[Sqrt[#]] &] %t A179334 Select[Union[Total/@Tuples[Fibonacci[Range[50]],3]],IntegerQ[Sqrt[ #]]&] (* _Harvey P. Dale_, Apr 29 2015 *) %Y A179334 Cf. A000032, A000045, A007895, A081069, A111378, A160238. %K A179334 nonn %O A179334 1,1 %A A179334 _Carmine Suriano_, Jan 12 2011