This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179335 #13 Jun 29 2022 13:40:36 %S A179335 2,3,5,7,11,3,7,19,2,2,3,3,41,3,7,3,5,61,7,7,3,7,3,89,7,101,3,7,109,3, %T A179335 2,3,3,3,149,5,5,3,7,3,7,181,19,3,7,19,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %U A179335 2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,401,409,19,2,3,3,3,3,449,5,61,3,7,7,7 %N A179335 a(n) is the smallest prime which appears as a substring of the decimal representation of prime(n). %C A179335 a(n) < 10 iff prime(n) is in A179336; %C A179335 a(n) = prime(n) iff prime(n) is in A033274. [Corrected by _M. F. Hasler_, Aug 27 2012] %H A179335 Reinhard Zumkeller, <a href="/A179335/b179335.txt">Table of n, a(n) for n = 1..10000</a> %o A179335 (PARI) A179335(n)={my(p=prime(n),m=0,M); for(d=1,n, M=10^d; n=p; until(n<=M || !n\=10, isprime(n%M) & (!m || m>n%M) & m=n%M); m & return(m))} \\ _M. F. Hasler_, Aug 27 2012 %o A179335 (Python) %o A179335 from sympy import isprime, prime %o A179335 def a(n): %o A179335 s = str(prime(n)) %o A179335 ss = set(int(s[i:i+1+l]) for i in range(len(s)) for l in range(len(s))) %o A179335 return min(t for t in ss if isprime(t)) %o A179335 print([a(n) for n in range(1, 94)]) # _Michael S. Branicky_, Jun 29 2022 %Y A179335 Cf. A000040, A070024, A019546, A092629, A104250, A019546, A034844, A179336, A193238. %K A179335 base,nonn %O A179335 1,1 %A A179335 _Reinhard Zumkeller_, Jul 11 2010