This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179378 #15 Aug 19 2025 20:54:27 %S A179378 2,7,7,0,9,7,9,7,6,4,1,8,5,2,1,5,1,8,9,1,4,8,3,3,0,8,6,8,9,5,9,3,8,9, %T A179378 6,8,0,5,7,8,7,4,5,8,5,7,0,5,5,2,6,2,1,9,0,7,0,2,8,3,1,8,2,1,5,1,0,1, %U A179378 1,3,1,3,4,4,6,6,1,8,2,2,9,7,9,4,2,5,0,2,8,2,8,5,1,0,5,7,2,5,3,5,2,2,7,2,1 %N A179378 Decimal expansion of the ratio of the area of the triangle corresponding to a circular segment with area r^2 of a circle with radius r to r^2 itself. %C A179378 In other words, the triangle area is A179378*(r^2). The triangle height is A179377*r. The segment height ("cap height" in MathWorld link) is A179376*r. The chord length is A179375*r. The arc length of the circular segment/sector is r*A179373. The area of the circular segment, r^2, is 1/Pi (A049541) times the area of the circle. The area of the sector is (r^2)*(A179373/2) = (r^2)*(1 + A179378). See references and cross-references for other relationships. %C A179378 From _Clark Kimberling_, Oct 10 2011: (Start) %C A179378 Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=cos(x+1) orthogonally; specifically: %C A179378 xo=0.277097976418521518914833086895... %C A179378 yo=0.289494183027862650094360757305... %C A179378 m=1.0447358251025919644670467125044... %C A179378 |OP|=0.4007370341535820008719293563... See the Mathematica program for a graph. (End) %D A179378 S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 7. %H A179378 G. C. Greubel, <a href="/A179378/b179378.txt">Table of n, a(n) for n = 0..10000</a> %H A179378 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CircularSegment.html">Circular Segment</a>. %F A179378 Equals sin(A179373)/2 = sin(A179373/2)*cos(A179373/2) = A179375*A179377/2. %e A179378 .2770979764185215189148330868959389680578745857055262190702831821510113134466... %t A179378 c = 1; %t A179378 xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] %t A179378 RealDigits[xo] (* A179378 *) %t A179378 m = 1/Sin[xo + c] %t A179378 RealDigits[m] (* A197009 *) %t A179378 yo = m*xo %t A179378 d = Sqrt[xo^2 + yo^2] %t A179378 Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}], %t A179378 ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, %t A179378 AspectRatio -> Automatic, AxesOrigin -> Automatic] %o A179378 (PARI) sin(solve(x=0, Pi, x-sin(x)-2))/2 %Y A179378 Cf. A179373 (central angle, radians), A179374 (central angle, degrees), A179375 (for chord length), A179376 (for "cap height", height of segment), A179377 (for triangle height), A049541; A197009 (radius of orthogonal circle). %K A179378 cons,nonn %O A179378 0,1 %A A179378 _Rick L. Shepherd_, Jul 11 2010