cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179378 Decimal expansion of the ratio of the area of the triangle corresponding to a circular segment with area r^2 of a circle with radius r to r^2 itself.

This page as a plain text file.
%I A179378 #15 Aug 19 2025 20:54:27
%S A179378 2,7,7,0,9,7,9,7,6,4,1,8,5,2,1,5,1,8,9,1,4,8,3,3,0,8,6,8,9,5,9,3,8,9,
%T A179378 6,8,0,5,7,8,7,4,5,8,5,7,0,5,5,2,6,2,1,9,0,7,0,2,8,3,1,8,2,1,5,1,0,1,
%U A179378 1,3,1,3,4,4,6,6,1,8,2,2,9,7,9,4,2,5,0,2,8,2,8,5,1,0,5,7,2,5,3,5,2,2,7,2,1
%N A179378 Decimal expansion of the ratio of the area of the triangle corresponding to a circular segment with area r^2 of a circle with radius r to r^2 itself.
%C A179378 In other words, the triangle area is A179378*(r^2). The triangle height is A179377*r. The segment height ("cap height" in MathWorld link) is A179376*r. The chord length is A179375*r. The arc length of the circular segment/sector is r*A179373. The area of the circular segment, r^2, is 1/Pi (A049541) times the area of the circle. The area of the sector is (r^2)*(A179373/2) = (r^2)*(1 + A179378). See references and cross-references for other relationships.
%C A179378 From _Clark Kimberling_, Oct 10 2011: (Start)
%C A179378 Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=cos(x+1) orthogonally; specifically:
%C A179378 xo=0.277097976418521518914833086895...
%C A179378 yo=0.289494183027862650094360757305...
%C A179378 m=1.0447358251025919644670467125044...
%C A179378 |OP|=0.4007370341535820008719293563...  See the Mathematica program for a graph. (End)
%D A179378 S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 7.
%H A179378 G. C. Greubel, <a href="/A179378/b179378.txt">Table of n, a(n) for n = 0..10000</a>
%H A179378 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CircularSegment.html">Circular Segment</a>.
%F A179378 Equals sin(A179373)/2 = sin(A179373/2)*cos(A179373/2) = A179375*A179377/2.
%e A179378 .2770979764185215189148330868959389680578745857055262190702831821510113134466...
%t A179378 c = 1;
%t A179378 xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100]
%t A179378 RealDigits[xo] (* A179378 *)
%t A179378 m = 1/Sin[xo + c]
%t A179378 RealDigits[m]  (* A197009 *)
%t A179378 yo = m*xo
%t A179378 d = Sqrt[xo^2 + yo^2]
%t A179378 Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}],
%t A179378 ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All,
%t A179378 AspectRatio -> Automatic, AxesOrigin -> Automatic]
%o A179378 (PARI) sin(solve(x=0, Pi, x-sin(x)-2))/2
%Y A179378 Cf. A179373 (central angle, radians), A179374 (central angle, degrees), A179375 (for chord length), A179376 (for "cap height", height of segment), A179377 (for triangle height), A049541; A197009 (radius of orthogonal circle).
%K A179378 cons,nonn
%O A179378 0,1
%A A179378 _Rick L. Shepherd_, Jul 11 2010