A179379
Row sums of the irregular table A179380 related to Bell numbers.
Original entry on oeis.org
1, 2, 4, 11, 35, 138, 600, 2929, 15339
Offset: 1
The table has shape A000041 and begins:
1
1 1
2 1 1
6 2 1 1 1
22 6 2 2 1 1 1
so
a(n) begins 1,2,4,11,35,...
A179313
Triangle T(n,k) read by rows: product of the compositorial weight of the k-th partition of n times A074664(.) applied to each part.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 4, 1, 3, 1, 22, 12, 4, 6, 3, 4, 1, 92, 44, 12, 4, 18, 12, 1, 8, 6, 5, 1, 426, 184, 44, 24, 66, 36, 12, 6, 24, 24, 4, 10, 10, 6, 1, 2146, 852, 184, 88, 36, 276, 132, 72, 18, 12, 88, 72, 24, 24, 1, 30, 40, 10, 12, 15, 7, 1, 11624, 4292, 852, 368, 264, 1278, 552
Offset: 1
T(6,3) represents the 3rd partition of 6, namely 2+4. A074664(2)*A074664(4) = 1*6 is multiplied
by the weight A048996([2,4]) = 2!/1!/1! =2, and T(6,3) =1*6*2=12.
T(6,5) represents the 5th partition of 6, namely 1+1+4. A074664(1)*A074664(1)*A074664(4) = 1*1*6 is multiplied
by the weight A048996([1,1,4]) = 3!/2!/1! =3, and T(6,5) =1*1*6*3.
T(7,6) represents the 6th partition of 7, namely 1+2+4. A074664(1)*A074664(2)*A074664(4) = 1*1*6 is multiplied
the weight A048996([1,2,4]) = 3!/1!/1!/1! =6, and T(7,6) =1*1*6*6.
The triangle starts
1;
1,1;
2,2,1;
6,4,1,3,1;
22,12,4,6,3,4,1;
92,44,12,4,18,12,1,8,6,5,1;
426,184,44,24,66,36,12,6,24,24,4,10,10,6,1;
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, p. 831
Showing 1-2 of 2 results.
Comments