cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179393 Period of the Fibonacci-type sequence described by A015134.

Original entry on oeis.org

1, 1, 3, 1, 8, 1, 6, 3, 6, 1, 20, 4, 1, 24, 8, 3, 1, 16, 16, 16, 1, 12, 6, 12, 3, 6, 12, 12, 1, 24, 24, 8, 24, 1, 60, 20, 3, 12, 4, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 5, 10, 5, 1, 24, 24, 6, 8, 3, 24, 6, 24, 24, 1, 28, 28, 28, 28, 28, 28, 1, 48, 16, 48, 16, 48, 16, 3, 1, 40, 40, 20
Offset: 1

Views

Author

Will Nicholes, Jul 12 2010

Keywords

Comments

First terms of A015134 are 1, 2, 2 and 4, meaning that there are 1, 2, 2 and 4 Fibonacci-type sequences modulo 1, 2, 3 and 4 respectively. These are:
mod 1: 0
mod 2: 0
mod 2: 0,1,1
mod 3: 0
mod 3: 0,1,1,2,0,2,2,1
mod 4: 0
mod 4: 0,1,1,2,3,1
mod 4: 0,2,2
mod 4: 0,3,3,2,1,3
The first sequence for each modulus is the period-1 sequence of 0,0,0... This has the helpful side effect of causing 1 to act as a delimiter between modulus entries: the first 1 indicates the start of modulo-1 sequences, the second 1 indicates the start of modulo-2 sequences, etc.
For each group of sequences (the group start indicated by a 1), the sum of the periods in that group equal the square of the modulus. 1 = 1, (1+3) = 4, (1+8) = 9, (1+6+3+6) = 16, etc.

Crossrefs