This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179404 #15 Aug 04 2024 16:44:10 %S A179404 0,0,0,48,600,3108,10388,27328,61668,124900,233288,409008,681408, %T A179404 1088388,1677900,2509568,3656428,5206788,7266208,9959600,13433448, %U A179404 17858148,23430468,30376128,38952500,49451428,62202168,77574448,95981648,117884100 %N A179404 Number of ways to place 3 nonattacking kings on an n X n toroidal board. %H A179404 Vincenzo Librandi, <a href="/A179404/b179404.txt">Table of n, a(n) for n = 1..1000</a> %H A179404 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a> %H A179404 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A179404 Explicit formula: a(n) = 1/6*n^2*(n^4 -27*n^2 +194), n>=4. %F A179404 G.f.: -4*x^4*(12*x^6 -67*x^5 +140*x^4 -112*x^3 -21*x^2 +66*x +12)/(x-1)^7. %t A179404 CoefficientList[Series[- 4 x^3 (12 x^6 - 67 x^5 + 140 x^4 - 112 x^3 - 21 x^2 + 66 x + 12) / (x - 1)^7, {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 01 2013 *) %t A179404 LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,48,600,3108,10388,27328,61668,124900},30] (* _Harvey P. Dale_, Aug 04 2024 *) %Y A179404 Cf. A061996, A179403. %K A179404 nonn,easy %O A179404 1,4 %A A179404 _Vaclav Kotesovec_, Jan 07 2011