This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179432 #5 Jul 02 2016 08:13:29 %S A179432 1,2,15,816,316251,873642672,17743125256857,2739097835911193328, %T A179432 3301626910467952067341626,31698997711344336177849363574320, %U A179432 2460103385023594223069956382123378560008 %N A179432 a(n) = C(2*3^(n-1), n). %C A179432 Equals column 0 in the matrix square of triangle T=A179430 where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0. %F A179432 G.f.: A(x) = Sum_{n>=0} (2/3)^n * log(1 + 3^n*x)^n / n!. %F A179432 a(n) ~ 2^n * 3^(n*(n-1)) / n!. - _Vaclav Kotesovec_, Jul 02 2016 %e A179432 G.f.: A(x) = 1 + 2*x + 15*x^2 + 816*x^3 + 316251*x^4 +... %e A179432 A(x) = 1 + 2*log(1+3*x)/3 + 2^2*log(1+3^2*x)^2/(3^2*2!) + 2^3*log(1+3^3*x)^3/(3^3*3!) + 2^4*log(1+3^4*x)^4/(3^4*4!) +... %t A179432 Table[Binomial[2*3^(n-1),n], {n,0,15}] (* _Vaclav Kotesovec_, Jul 02 2016 *) %o A179432 (PARI) {a(n)=binomial(2*3^(n-1), n)} %o A179432 (PARI) /* G.f. A(x) as Sum of Series: */ %o A179432 {a(n)=polcoeff(sum(k=0, n, (2/3)^k*log(1+3^k*x +x*O(x^n))^k/k!), n)} %Y A179432 Cf. A179430, A179431, A136393, A179433, A179434. %K A179432 nonn %O A179432 0,2 %A A179432 _Paul D. Hanna_, Jul 20 2010