This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179455 #50 May 25 2020 11:51:15 %S A179455 1,1,1,2,1,5,6,1,15,23,24,1,52,106,119,120,1,203,568,700,719,720,1, %T A179455 877,3459,4748,5013,5039,5040,1,4140,23544,36403,39812,40285,40319, %U A179455 40320,1,21147,176850,310851,354391,362057,362836,362879,362880 %N A179455 Triangle read by rows: number of permutation trees of power n and height <= k + 1. %C A179455 Partial row sums of A179454. Special cases: A179455(n,1) = BellNumber(n) = A000110(n) for n > 1; A179455(n,n-1) = n! for n > 1 and A179455(n,n-2) = A033312(n) for n > 1. Column 3 is A187761(n) for n >= 3. %C A179455 See the interpretation of _Joerg Arndt_ in A187761: Maps such that f^[k](x) = f^[k-1](x) correspond to column k of A179455 (for n >= k). - _Peter Luschny_, Jan 08 2013 %H A179455 Alois P. Heinz, <a href="/A179455/b179455.txt">Rows n = 0..141, flattened</a> %H A179455 Swapnil Garg, Alan Peng, <a href="https://arxiv.org/abs/2005.08889">Classical and consecutive pattern avoidance in rooted forests</a>, arXiv:2005.08889 [math.CO], May 2020. %H A179455 Peter Luschny, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/PermutationTrees">Permutation Trees</a>. %e A179455 As a (0,0)-based triangle with an additional column [1,0,0,0,...] at the left hand side: %e A179455 1; %e A179455 0, 1; %e A179455 0, 1, 2; %e A179455 0, 1, 5, 6; %e A179455 0, 1, 15, 23, 24; %e A179455 0, 1, 52, 106, 119, 120; %e A179455 0, 1, 203, 568, 700, 719, 720; %e A179455 0, 1, 877, 3459, 4748, 5013, 5039, 5040; %e A179455 0, 1, 4140, 23544, 36403, 39812, 40285, 40319, 40320; %e A179455 0, 1, 21147, 176850, 310851, 354391, 362057, 362836, 362879, 362880; %t A179455 b[n_, t_, h_] := b[n, t, h] = If[n == 0 || h == 0, 1, Sum[Binomial[n - 1, j - 1]*b[j - 1, 0, h - 1]*b[n - j, t, h], {j, 1, n}]]; %t A179455 T[0, 0] = 1; T[n_, k_] := b[n, 1, k]; %t A179455 Table[T[n, k], {n, 0, 9}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* _Jean-François Alcover_, Jul 10 2019, after _Alois P. Heinz_ in A179454 *) %o A179455 (Sage) %o A179455 # Generating algorithm from Joerg Arndt. %o A179455 def A179455row(n): %o A179455 def generate(n, k): %o A179455 if n == 0 or k == 0: return 0 %o A179455 for j in range(n-1, 0, -1): %o A179455 f = a[j] + 1 %o A179455 while f <= j: %o A179455 a[j] = f1 = fl = f %o A179455 for i in range(k): %o A179455 fl = f1 %o A179455 f1 = a[fl] %o A179455 if f1 == fl: return j %o A179455 f += 1 %o A179455 a[j] = 0 %o A179455 return 0 %o A179455 count = [1 for j in range(n)] if n > 0 else [1] %o A179455 for k in range(n): %o A179455 a = [0 for j in range(n)] %o A179455 while generate(n, k) != 0: %o A179455 count[k] += 1 %o A179455 return count %o A179455 for n in range(9): A179455row(n) # _Peter Luschny_, Jan 08 2013 %o A179455 (Sage) # uses[bell_transform from A264428] %o A179455 # Adds the column (1,0,0,0,..) to the left hand side and starts at n=0. %o A179455 def A179455_matrix(dim): %o A179455 b = [1]+[0]*(dim-1); L = [b] %o A179455 for k in range(dim): %o A179455 b = [sum(bell_transform(n, b)) for n in range(dim)] %o A179455 L.append(b) %o A179455 return matrix(ZZ, dim, lambda n, k: L[k][n] if k<=n else 0) %o A179455 print(A179455_matrix(10)) # _Peter Luschny_, Dec 06 2015 %Y A179455 Row sums are A264151. %Y A179455 Cf. A000110, A179454, A179456, A187761, A264428. %K A179455 nonn,tabf,look,nice %O A179455 0,4 %A A179455 _Peter Luschny_, Aug 11 2010