cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009944 Left-right/right-left numbers: n = pq such that n=q_reversed*p_reversed.

Original entry on oeis.org

126, 153, 688, 187029, 223524, 267034, 1574253, 10013323, 10353244, 36528975, 109019911, 116257833, 1958249722, 2285044524, 2996225824, 6264507888, 10544814252, 15742574253, 31951523916, 35497206387, 62967699976, 94691579179, 182738252812, 187021087029
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Comments

The decimal expansion of n is p followed by q, and n is also the product of R(p)*R(q), where R reverses the order of the digits. - N. J. A. Sloane, May 22 2016
A subset of A179482; only two factors permitted. - Adam Kertesz, Aug 07 2010
The sequence is infinite, since it contains at least 3 infinite subsequences, namely b(n) = 3*(88810 + 2099*10^(6*n))/33670 = 187029, 187021087029,... c(n) = 11011*(1 + 100^(1 + 2*n))/101 = 109019911, 1090198019911,... and d(n) = 3*(53*10000^n - 14900)/10100 = 153, 1574253,... - Giovanni Resta, Mar 17 2013

Examples

			E.g. 223524 = 42 * 5322.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n < 2*10^8, n++, For[dd = IntegerDigits[n] // Reverse; k = 1, k <= Length[dd] - 1, k++, If[n == FromDigits[dd[[1 ;; k]]]*FromDigits[ dd[[k + 1 ;; -1]]], Print[n]; Sow[n]; Break[]]]]][[2, 1]] (* Jean-François Alcover, May 22 2016 *)
  • Python
    from sympy import divisors
    def ok(n):
        if n%10==0: return False
        t = str(n)[::-1]
        return any(t==str(d)+str(n//d) for d in divisors(n, generator=True))
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Apr 13 2024

Extensions

David W. Wilson has verified that all terms shown are correct, Sep 28 2000

A217247 Numbers that can be obtained by inserting multiplication signs among the digits of their squares.

Original entry on oeis.org

1, 3168, 33696, 322056, 422352, 801792, 3408048, 13304736, 24772608, 26836992, 31959648, 43932456, 98558208, 152845056, 238267008, 250677504, 362330496, 413779968, 511967232, 567502848, 646507008, 1060190208, 1273234464, 1288514304, 1503330304
Offset: 1

Views

Author

Giovanni Resta, Mar 16 2013

Keywords

Comments

The first nontrivial term such that the resulting multiplicands have no leading zeros is given by 152845056^2 = 23361611143643136 and 2*3*3*6*1*6*1*1*14*3*6*4*3*13*6 = 152845056.

Examples

			3168 is in the sequence since its square is 10036224 and 1*0036*22*4 = 3168.
		

Crossrefs

Cf. A179482.

Extensions

Typo in example corrected by Christian N. K. Anderson, Apr 04 2013
Showing 1-2 of 2 results.