This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179485 #8 Sep 04 2018 18:07:40 %S A179485 8,100,1120,1220,1300,2240,2380,2414,3536,3634,4906,4940,5566,5740, %T A179485 6706,7240,8864,9224,9394,10136,10850,12040,12476,12586,12920,13180, %U A179485 13334,13754,14630,14720,15134,16270,17710,18430,18800,19916,21014,21320 %N A179485 Sums of two successive primes s such that s+-3 are primes. %C A179485 Intersection of A001043 and A087695. - _Robert Israel_, Oct 25 2017 %H A179485 Robert Israel, <a href="/A179485/b179485.txt">Table of n, a(n) for n = 1..10000</a> %e A179485 3+5=8,8-3=5(prime),8+3=11(prime),.. %p A179485 q:= 2; p:= 3; %p A179485 count:= 0: %p A179485 while count < 100 do %p A179485 q:= p; p:= nextprime(p); %p A179485 s:= q+p; %p A179485 if isprime(s-3) and isprime(s+3) then %p A179485 count:= count+1; A[count]:= s; %p A179485 fi %p A179485 od: %p A179485 seq(A[i],i=1..count); # _Robert Israel_, Oct 25 2017 %t A179485 q=3;Select[Table[Prime[n]+Prime[n+1],{n,7!}],PrimeQ[ #-q]&&PrimeQ[ #+q]&] %t A179485 Select[Total/@Partition[Prime[Range[1400]],2,1],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Sep 04 2018 *) %Y A179485 Cf. A074924, A074925, A167597, A176984, A176986, A075593, A075594, A116360, A076565 %Y A179485 Cf. A001043, A087695. %K A179485 nonn %O A179485 1,1 %A A179485 _Vladimir Joseph Stephan Orlovsky_, Jul 16 2010