A179508 a(n) is the unique integer such that Sum_{k=0..p-1} b(k)/(-n)^k == a(n) (mod p) for any prime p not dividing n, where b(0), b(1), b(2), ... are Bell numbers given by A000110.
2, 1, 2, -1, 10, -43, 266, -1853, 14834, -133495, 1334962, -14684569, 176214842, -2290792931, 32071101050, -481066515733, 7697064251746, -130850092279663, 2355301661033954, -44750731559645105, 895014631192902122, -18795307255050944539
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..451
- Zhi-Wei Sun, Open Conjectures on Congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2010.
- Zhi-Wei Sun, On Apery numbers and generalized central trinomial coefficients, preprint, arXiv:1006.2776 [math.NT], 2010-2011.
- Zhi-Wei Sun, A conjecture on Bell numbers (a message to Number Theory List on July 17, 2010) [From _Zhi-Wei Sun_, Jul 18 2010]
- Zhi-Wei Sun and Don Zagier, On a curious property of Bell numbers, Bulletin of the Australian Mathematical Society, Volume 84, Issue 1, August 2011. [_Zhi-Wei Sun_, Aug 07 2010]
Programs
-
Maple
A179508:= n-> (-1)^n*(n!*add((-1)^(k)/k!, k=0..n))+1 : seq(A179508(n), n=0..21); # second program: G(x):=(2-x)*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0; seq((-1)^n*f[n], n=0..21); # Mélika Tebni, Jul 10 2021
-
Mathematica
a[1] = 2; a[n_]:=a[n]=a[n-1]*(1-n)+n+1; Array[a, 30] (* Jon Maiga, Jul 10 2021 *)
Formula
a(n) = a(n-1)*(1-n)+n+1. - Jon Maiga, Jul 10 2021
Comments