A179524 a(n) = Sum_{k=0..n} (-4)^k*binomial(n,k)^2*binomial(n-k,k)^2.
1, 1, -15, -143, 1, 12801, 100401, -555855, -16006143, -69903359, 1371541105, 20881151985, 5878439425, -2725373454335, -25310084063055, 145439041081137, 4851621446905857, 23952290336559105, -470461357757965071, -7793050905481342863, -4149447893184517119
Offset: 0
Keywords
Examples
For n=3 we have a(3)=1-4*3^2*2^2=-143.
Links
- Zhi-Wei Sun, Open Conjectures on Congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2011.
- Zhi-Wei Sun, On Apery numbers and generalized central trinomial coefficients, preprint, arXiv:1006.2776 [math.NT], 2010-2011.
Programs
-
Mathematica
W[n_]:=Sum[(-4)^k*Binomial[n,k]^2*Binomial[n-k,k]^2,{k,0,n}] Table[W[n],{n,0,50}]
Formula
a(n) = Sum_{k=0..[n/2]} (-4)^k*binomial(n,2k)^2*binomial(2k,k)^2.
Comments