This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179528 #9 Apr 30 2017 22:37:10 %S A179528 0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,6,6,6,6, %T A179528 6,6,6,6,6,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,12,12,12,12, %U A179528 12,12,13,13,13,13,14,14,14,14,14,14,14,14,15,15,16,16,16,16,17,17,17,17 %N A179528 Number of terms of A083207 that are not greater than n. %C A179528 Partial sums of A179527: a(n) = SUM(A179527(k): 1<=k<=n); %C A179528 A179529(n+1) = a(n+12) - a(n). %H A179528 R. Zumkeller, <a href="/A179528/b179528.txt">Table of n, a(n) for n = 1..10000</a> %H A179528 Peter Luschny, <a href="http://www.luschny.de/math/seq/ZumkellerNumbers.html">Zumkeller Numbers</a> %e A179528 a(100)=#{6,12,20,24,28,30,40,42,48,54,56,60,66,70,78,80,84,88,90,96}=20; %e A179528 a(1000000)=229026, by _T. D. Noe_. %t A179528 ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; %t A179528 b[n_] := Boole[ZumkellerQ[n]]; %t A179528 Array[b, 100] // Accumulate (* _Jean-François Alcover_, Apr 30 2017, after _T. D. Noe_ *) %K A179528 nonn %O A179528 1,12 %A A179528 _Reinhard Zumkeller_, Jul 19 2010