cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179528 Number of terms of A083207 that are not greater than n.

This page as a plain text file.
%I A179528 #9 Apr 30 2017 22:37:10
%S A179528 0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,6,6,6,6,6,
%T A179528 6,6,6,6,6,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,12,12,12,12,
%U A179528 12,12,13,13,13,13,14,14,14,14,14,14,14,14,15,15,16,16,16,16,17,17,17,17
%N A179528 Number of terms of A083207 that are not greater than n.
%C A179528 Partial sums of A179527: a(n) = SUM(A179527(k): 1<=k<=n);
%C A179528 A179529(n+1) = a(n+12) - a(n).
%H A179528 R. Zumkeller, <a href="/A179528/b179528.txt">Table of n, a(n) for n = 1..10000</a>
%H A179528 Peter Luschny, <a href="http://www.luschny.de/math/seq/ZumkellerNumbers.html">Zumkeller Numbers</a>
%e A179528 a(100)=#{6,12,20,24,28,30,40,42,48,54,56,60,66,70,78,80,84,88,90,96}=20;
%e A179528 a(1000000)=229026, by _T. D. Noe_.
%t A179528 ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]];
%t A179528 b[n_] := Boole[ZumkellerQ[n]];
%t A179528 Array[b, 100] // Accumulate (* _Jean-François Alcover_, Apr 30 2017, after _T. D. Noe_ *)
%K A179528 nonn
%O A179528 1,12
%A A179528 _Reinhard Zumkeller_, Jul 19 2010