cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179533 Expansion of (1/(1-x-2x^2))*c(x/(1-x-2x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 7, 23, 85, 332, 1369, 5870, 25945, 117374, 540805, 2528675, 11966923, 57206972, 275824159, 1339721519, 6549093013, 32195473406, 159065828029, 789395034701, 3933239089903, 19668745466636, 98679891233803, 496570499905832, 2505670304785615, 12675395921692394, 64270076976110203, 326580624341708693, 1662796531746045157, 8481930651824392268, 43341418581113085697
Offset: 0

Views

Author

Paul Barry, Jan 08 2011

Keywords

Comments

Hankel transform is A168495(n+1).

Crossrefs

Programs

  • Maple
    with(LREtools): with(FormalPowerSeries): # requires Maple 2022
    ogf:= (1/(1-x-2*x^2))*(1 - sqrt(1 - 4*(x/(1-x-2*x^2)))) / (2*(x/(1-x-2*x^2))):
    init:= [1, 2, 7, 23, 85, 332, 1369];
    iseq:= seq(u(i-1)=init[i],i=1..nops(init)): req:= FindRE(ogf,x,u(n));
    rmin:= subs(n=n-4,MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence
    a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):
    seq(a(n),n=0..30); # Georg Fischer, Nov 04 2022

Formula

G.f.: 1/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} A000108(k)*Sum_{j=0..n-k} C(k+j,k)*C(j,n-k-j)*2^(n-k-j).
a(n) = Sum_{k=0..n} A073370(n,k)*A000108(k).
D-finite with recurrence: (n+1)*a(n) +2*(1-3n)*a(n-1) +(n-1)*a(n-2) +4*(3n-5)*a(n-3) +4*(n-3)*a(n-4)= 0. - R. J. Mathar, Nov 17 2011