A179533 Expansion of (1/(1-x-2x^2))*c(x/(1-x-2x^2)), c(x) the g.f. of A000108.
1, 2, 7, 23, 85, 332, 1369, 5870, 25945, 117374, 540805, 2528675, 11966923, 57206972, 275824159, 1339721519, 6549093013, 32195473406, 159065828029, 789395034701, 3933239089903, 19668745466636, 98679891233803, 496570499905832, 2505670304785615, 12675395921692394, 64270076976110203, 326580624341708693, 1662796531746045157, 8481930651824392268, 43341418581113085697
Offset: 0
Keywords
Programs
-
Maple
with(LREtools): with(FormalPowerSeries): # requires Maple 2022 ogf:= (1/(1-x-2*x^2))*(1 - sqrt(1 - 4*(x/(1-x-2*x^2)))) / (2*(x/(1-x-2*x^2))): init:= [1, 2, 7, 23, 85, 332, 1369]; iseq:= seq(u(i-1)=init[i],i=1..nops(init)): req:= FindRE(ogf,x,u(n)); rmin:= subs(n=n-4,MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence a:= gfun:-rectoproc({rmin, iseq}, u(n), remember): seq(a(n),n=0..30); # Georg Fischer, Nov 04 2022
Formula
G.f.: 1/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} A000108(k)*Sum_{j=0..n-k} C(k+j,k)*C(j,n-k-j)*2^(n-k-j).
D-finite with recurrence: (n+1)*a(n) +2*(1-3n)*a(n-1) +(n-1)*a(n-2) +4*(3n-5)*a(n-3) +4*(n-3)*a(n-4)= 0. - R. J. Mathar, Nov 17 2011
Comments