This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179550 #14 Aug 07 2021 12:14:33 %S A179550 13,127,457,1429,1553,1621,2273,2341,2837,4129,4231,4561,4813,5119, %T A179550 5519,5531,6121,6451,6547,8161,8167,8219,8237,8783,8819,8831,8941, %U A179550 9511,10267,10559,11299,11383,12809,13183,15091,15569,16573,17569,17659,18133 %N A179550 Primes p such that p plus or minus the sum of its digits squared yields a prime in both cases. %H A179550 Robert Israel, <a href="/A179550/b179550.txt">Table of n, a(n) for n = 1..10000</a> %e A179550 a(5)=1553 since 1553+(1^2+5^2+5^2+3^2)=1553+60=1613 is a prime AND 1553-(1^2+5^2+5^2+3^2)=1553-60=1493 is a prime again. %p A179550 filter:= proc(p) local t,r; %p A179550 if not isprime(p) then return false fi; %p A179550 r:= add(t^2, t=convert(p,base,10)); %p A179550 isprime(p+r) and isprime(p-r); %p A179550 end proc: %p A179550 select(filter, [seq(i,i=3..20000,2)]); # _Robert Israel_, Mar 30 2021 %t A179550 Select[Prime[Range[2100]],AllTrue[#+{Total[IntegerDigits[#]^2],-Total[ IntegerDigits[ #]^2]},PrimeQ]&] (* _Harvey P. Dale_, Aug 07 2021 *) %o A179550 (PARI) sumdd(n) = {digs = digits(n, 10); return (sum(i=1, #digs, digs[i]^2));} %o A179550 lista(nn) = {forprime(p=2, nn, s = sumdd(p); if (isprime(p+s) && isprime(p-s), print1(p, ", ")););} \\ _Michel Marcus_, Jul 25 2013 %o A179550 (Python) %o A179550 from sympy import isprime, primerange %o A179550 def sumdd(n): return sum(int(d)**2 for d in str(n)) %o A179550 def list(nn): %o A179550 for p in primerange(2, nn+1): %o A179550 s = sumdd(p) %o A179550 if isprime(p-s) and isprime(p+s): print(p, end=", ") %o A179550 list(18133) # _Michael S. Branicky_, Mar 30 2021 after _Michel Marcus_ %Y A179550 Cf. A076162, A076163, A179549. %K A179550 nonn,base %O A179550 1,1 %A A179550 _Carmine Suriano_, Jul 19 2010