cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179587 Decimal expansion of the volume of square cupola with edge length 1.

This page as a plain text file.
%I A179587 #40 Oct 30 2023 02:05:51
%S A179587 1,9,4,2,8,0,9,0,4,1,5,8,2,0,6,3,3,6,5,8,6,7,7,9,2,4,8,2,8,0,6,4,6,5,
%T A179587 3,8,5,7,1,3,1,1,4,5,8,3,5,8,4,6,3,2,0,4,8,7,8,4,4,5,3,1,5,8,6,6,0,4,
%U A179587 8,8,3,1,8,9,7,4,7,3,8,0,2,5,9,0,0,2,5,8,3,5,6,2,1,8,4,2,7,7,1,5,1,5,6,6,7
%N A179587 Decimal expansion of the volume of square cupola with edge length 1.
%C A179587 Square cupola: 12 vertices, 20 edges, and 10 faces.
%C A179587 Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - _Bruno Berselli_, Apr 02 2013
%C A179587 Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - _L. Edson Jeffery_, Nov 12 2014
%C A179587 2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - _Amiram Eldar_, Sep 25 2022
%H A179587 G. C. Greubel, <a href="/A179587/b179587.txt">Table of n, a(n) for n = 1..10000</a>
%H A179587 Victor Oxman and Moshe Stupel, <a href="http://forumgeom.fau.edu/FG2013volume13/FG201311index.html">Why are the side lengths of the squares inscribed in a triangle so close to each other?</a>, Forum Geometricorum, Vol. 13 (2013), 113-115.
%H A179587 Wolfram Alpha, <a href="http://www.wolframalpha.com/input/?i=Johnson+solid+4">Johnson solid 4</a>
%H A179587 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>
%F A179587 Equals (3 + 2*sqrt(2))/3.
%F A179587 Equals 1 + 2*A131594. - _L. Edson Jeffery_, Nov 12 2014
%e A179587 1.942809041582063365867792482806465385713114583584632048784453158660...
%t A179587 RealDigits[N[1+(2*Sqrt[2])/3,200]]
%t A179587 (* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* _Bruno Berselli_, Apr 02 2013 *)
%o A179587 (PARI) sqrt(8)/3+1 \\ _Charles R Greathouse IV_, Nov 14 2016
%Y A179587 Cf. A001622, A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451, A179452, A179552, A179553, A019881, A224268.
%Y A179587 Cf. A131594 (decimal expansion of sqrt(2)/3).
%K A179587 nonn,cons,easy
%O A179587 1,2
%A A179587 _Vladimir Joseph Stephan Orlovsky_, Jul 19 2010