This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179587 #40 Oct 30 2023 02:05:51 %S A179587 1,9,4,2,8,0,9,0,4,1,5,8,2,0,6,3,3,6,5,8,6,7,7,9,2,4,8,2,8,0,6,4,6,5, %T A179587 3,8,5,7,1,3,1,1,4,5,8,3,5,8,4,6,3,2,0,4,8,7,8,4,4,5,3,1,5,8,6,6,0,4, %U A179587 8,8,3,1,8,9,7,4,7,3,8,0,2,5,9,0,0,2,5,8,3,5,6,2,1,8,4,2,7,7,1,5,1,5,6,6,7 %N A179587 Decimal expansion of the volume of square cupola with edge length 1. %C A179587 Square cupola: 12 vertices, 20 edges, and 10 faces. %C A179587 Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - _Bruno Berselli_, Apr 02 2013 %C A179587 Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - _L. Edson Jeffery_, Nov 12 2014 %C A179587 2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - _Amiram Eldar_, Sep 25 2022 %H A179587 G. C. Greubel, <a href="/A179587/b179587.txt">Table of n, a(n) for n = 1..10000</a> %H A179587 Victor Oxman and Moshe Stupel, <a href="http://forumgeom.fau.edu/FG2013volume13/FG201311index.html">Why are the side lengths of the squares inscribed in a triangle so close to each other?</a>, Forum Geometricorum, Vol. 13 (2013), 113-115. %H A179587 Wolfram Alpha, <a href="http://www.wolframalpha.com/input/?i=Johnson+solid+4">Johnson solid 4</a> %H A179587 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a> %F A179587 Equals (3 + 2*sqrt(2))/3. %F A179587 Equals 1 + 2*A131594. - _L. Edson Jeffery_, Nov 12 2014 %e A179587 1.942809041582063365867792482806465385713114583584632048784453158660... %t A179587 RealDigits[N[1+(2*Sqrt[2])/3,200]] %t A179587 (* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* _Bruno Berselli_, Apr 02 2013 *) %o A179587 (PARI) sqrt(8)/3+1 \\ _Charles R Greathouse IV_, Nov 14 2016 %Y A179587 Cf. A001622, A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451, A179452, A179552, A179553, A019881, A224268. %Y A179587 Cf. A131594 (decimal expansion of sqrt(2)/3). %K A179587 nonn,cons,easy %O A179587 1,2 %A A179587 _Vladimir Joseph Stephan Orlovsky_, Jul 19 2010