A179601 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1+4*x)/(1 - 2*x - 10*x^2 - 4*x^3).
1, 6, 22, 108, 460, 2088, 9208, 41136, 182704, 813600, 3618784, 16104384, 71651008, 318820992, 1418569600, 6311953152, 28084886272, 124963582464, 556023840256, 2474023050240, 11008138832896, 48980603529216, 217938687588352
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,10,4).
Programs
-
Maple
with(LinearAlgebra): nmax:=22; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [1,1,1,0,0,0,1,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
Formula
G.f.: ( -1-4*x ) / ( (2*x+1)*(2*x^2 + 4*x - 1) ).
a(n) = 2*a(n-1) + 10*a(n-2) + 4*a(n-3) with a(0)=1, a(1)=6 and a(2)=22.
a(n) = (-2/5)*(-1/2)^(-n) + ((2+3*A)*A^(-n-1) + (2+3*B)*B^(-n-1))/10 with A = (-1+sqrt(6)/2) and B = (-1-sqrt(6)/2).
Comments