A179605 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 3*x - 2*x^2)/(1 - 2*x - 9*x^2 - 2*x^3).
1, 5, 17, 81, 325, 1413, 5913, 25193, 106429, 451421, 1911089, 8097825, 34298293, 145299189, 615478665, 2607246617, 11044399597, 46784976077, 198184041761, 839521667409, 3556269662821, 15064602415845, 63814675131897
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,9,2).
Programs
-
Maple
with(LinearAlgebra): nmax:=21; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,0,1,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
Formula
G.f.: ( -1 - 3*x + 2*x^2 ) / ( (2*x+1)*(x^2 + 4*x - 1) ).
a(n) = 2*a(n-1) + 9*a(n-2) + 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=17.
a(n) = (-4/11)*(-1/2)^(-n) + ((17+41*A)*A^(-n-1) + (17+41*B)*B^(-n-1))/110 with A = (-2+sqrt(5)) and B =(-2-sqrt(5)).
Comments