A328370 Quasi-amicable pairs.
48, 75, 140, 195, 1050, 1925, 1575, 1648, 2024, 2295, 5775, 6128, 8892, 16587, 9504, 20735, 62744, 75495, 186615, 206504, 196664, 219975, 199760, 309135, 266000, 507759, 312620, 549219, 526575, 544784, 573560, 817479, 587460, 1057595, 1000824, 1902215, 1081184, 1331967, 1139144, 1159095, 1140020, 1763019
Offset: 1
Keywords
Examples
Initial quasi-amicable pairs: 48, 75; 140, 195; 1050, 1925; 1575, 1648; 2024, 2295; ... The sum of the divisors of 48 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 16 + 24 + 48 = 124. On the other hand the sum of the divisors of 75 is 1 + 3 + 5 + 15 + 25 + 75 = 124. Note that 48 + 75 + 1 = sigma(48) = sigma(75) = 124. The smallest quasi-amicable pair is (48, 75), so a(1) = 48 and a(2) = 75.
Links
- R. K. Guy, Unsolved Problems in Number Theory, B5.
- P. Hagis and G. Lord, Quasi-amicable numbers, Math. Comp. 31 (1977), 608-611.
- Hisanori Mishima, Table of quasi-amicable pairs under 10^10.
- Paul Pollack, Quasi-Amicable Numbers are Rare, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.2.
- Eric Weisstein's World of Mathematics, Quasiamicable Pair.
Programs
-
Maple
with(numtheory): aList := proc(searchbound) local r, n, m, L: L := []: for m from 1 to searchbound do n := sigma(m) - m - 1: if n <= m then next fi; r := sigma(n) - n - 1: if r = m then L := [op(L), m, n] fi; od; L end: aList(10000); # Peter Luschny, Nov 18 2019
Comments