This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179618 #22 Jan 01 2023 09:47:00 %S A179618 5,11,11,21,35,21,43,93,93,43,85,269,314,269,85,171,747,1213,1213,747, %T A179618 171,341,2115,4375,6427,4375,2115,341,683,5933,16334,31387,31387, %U A179618 16334,5933,683,1365,16717,59925,159651,202841,159651,59925,16717,1365,2731 %N A179618 T(n,k) = Half the number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock diagonal sum differing from its antidiagonal sum by more than 2. %C A179618 T(n,k) apparently is also the number of ways to tile an (n+2) X (k+2) rectangle with 1 X 1 and 2 X 2 tiles. %H A179618 R. H. Hardin, <a href="/A179618/b179618.txt">Table of n, a(n) for n = 1..839</a> %e A179618 Table starts %e A179618 5 11 21 43 85 171 341 %e A179618 11 35 93 269 747 2115 5933 %e A179618 21 93 314 1213 4375 16334 59925 %e A179618 43 269 1213 6427 31387 159651 795611 %e A179618 85 747 4375 31387 202841 1382259 9167119 %e A179618 171 2115 16334 159651 1382259 12727570 113555791 %e A179618 341 5933 59925 795611 9167119 113555791 1355115601 %e A179618 683 16717 221799 4005785 61643709 1029574631 16484061769 %e A179618 1365 47003 817280 20064827 411595537 9258357134 198549329897 %e A179618 2731 132291 3018301 100764343 2758179839 83605623809 2403674442213 %e A179618 Some solutions for 6 X 6: %e A179618 0 2 0 2 0 2 0 1 0 2 1 2 0 2 0 2 0 2 0 1 0 2 0 1 %e A179618 2 0 2 0 2 1 2 0 2 0 2 0 2 0 1 0 1 0 2 0 2 0 2 0 %e A179618 0 2 0 2 0 2 1 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 %e A179618 2 0 2 0 2 1 2 0 2 0 1 0 1 0 2 0 2 0 1 0 2 0 2 0 %e A179618 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 %e A179618 1 0 1 0 1 0 2 1 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 0 %Y A179618 Diagonal is A063443(n+2). %Y A179618 Column 1 is A001045(n+3). %Y A179618 Column 2 is A054854(n+2). %Y A179618 Column 3 is A054855(n+2). %Y A179618 Column 4 is A063650(n+2). %Y A179618 Column 5 is A063651(n+2). %Y A179618 Column 6 is A063652(n+2). %Y A179618 Column 7 is A063653(n+2). %Y A179618 Column 8 is A063654(n+2). %K A179618 nonn,tabl %O A179618 1,1 %A A179618 _R. H. Hardin_, Jan 10 2011