cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179625 Legal generalized repunit prime numbers.

Original entry on oeis.org

5, 7, 13, 31, 43, 73, 157, 211, 241, 1093, 2801, 19531, 22621, 30941, 55987, 88741, 245411, 292561, 346201, 797161, 5229043, 8108731, 12207031, 25646167, 305175781, 321272407, 917087137, 16148168401, 2141993519227, 10778947368421, 17513875027111, 610851724137931, 50544702849929377
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 09 2011

Keywords

Comments

In Chris Caldwell's sense, a legal generalized repunit prime is a prime number of the form (b^p-1)/(b-1) such that 3 <= b <= 5*p, b != 10, and p prime.

Crossrefs

Cf. A076481, A086122, A165210, A102170 (repunit primes in bases 3, 5, 6, and 7)
This sequence except for the term 5 is subsequence of A085104.

Programs

  • Mathematica
    lim=10^17; n=1; Sort[Reap[While[p=Prime[n]; b=3; While[num=Cyclotomic[p,b]; b<=5p && num<=lim, If[b!=10 && PrimeQ[num], Sow[num]]; b++]; b>3, n++]][[2,1]]]
  • PARI
    upTo(lim)=my(v=List(),t);forprime(p=2,log(2*lim+1)\log(3),for(b=3,5*p,if(b==10,next);t=(b^p-1)/(b-1);if(t>lim,break);if(isprime(t),listput(v,t))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Aug 21 2011