This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179644 #29 Apr 22 2025 04:11:16 %S A179644 240,336,528,560,624,810,816,880,912,1040,1104,1134,1232,1360,1392, %T A179644 1456,1488,1520,1776,1782,1840,1904,1968,2064,2106,2128,2256,2288, %U A179644 2320,2480,2544,2576,2754,2832,2835,2928,2960,2992,3078,3216,3248,3280,3344,3408 %N A179644 Product of the 4th power of a prime and 2 different distinct primes (p^4*q*r). %H A179644 T. D. Noe, <a href="/A179644/b179644.txt">Table of n, a(n) for n = 1..1000</a> %H A179644 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures">List of Prime Signatures</a> %H A179644 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %e A179644 240=2^4*3*5,336=2^4*3*7,..810=2^3^4*5,.. %t A179644 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,4}; Select[Range[4000], f] %t A179644 Take[Union[#[[1]]^4 #[[2]]#[[3]]&/@(Flatten[Permutations/@ Subsets[ Prime[ Range[ 20]],{3}],1])],50] (* _Harvey P. Dale_, Feb 07 2013 *) %o A179644 (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/4),forprime(q=2,sqrt(lim\p^4),if(p==q,next);t=p^4*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 19 2011 %o A179644 (Python) %o A179644 from math import isqrt %o A179644 from sympy import primepi, primerange, integer_nthroot %o A179644 def A179644(n): %o A179644 def bisection(f,kmin=0,kmax=1): %o A179644 while f(kmax) > kmax: kmax <<= 1 %o A179644 kmin = kmax >> 1 %o A179644 while kmax-kmin > 1: %o A179644 kmid = kmax+kmin>>1 %o A179644 if f(kmid) <= kmid: %o A179644 kmax = kmid %o A179644 else: %o A179644 kmin = kmid %o A179644 return kmax %o A179644 def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**4)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,6)[0]) %o A179644 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A179644 Cf. A006881, A007304, A065036, A085986, A085987, A178739, A179642, A179643. %K A179644 nonn %O A179644 1,1 %A A179644 _Vladimir Joseph Stephan Orlovsky_, Jul 21 2010