This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179646 #26 Feb 21 2025 21:44:22 %S A179646 288,800,972,1568,3872,5408,6075,9248,11552,11907,12500,16928,26912, %T A179646 28125,29403,30752,41067,43808,53792,59168,67228,70227,70688,87723, %U A179646 89888,111392,119072,128547,143648,151263,153125,161312,170528,199712 %N A179646 Product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2). %C A179646 288=2^5*3^2, 800=2^5*5^2,.. %H A179646 T. D. Noe, <a href="/A179646/b179646.txt">Table of n, a(n) for n = 1..1000</a> %H A179646 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %H A179646 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A179646 Sum_{n>=1} 1/a(n) = P(2)*P(5) - P(7) = A085548 * A085965 - A085967 = 0.007886..., where P is the prime zeta function. - _Amiram Eldar_, Jul 06 2020 %t A179646 f[n_]:=Sort[Last/@FactorInteger[n]]=={2,5}; Select[Range[200000], f] %o A179646 (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\4)^(1/5),t=p^5;forprime(q=2,sqrt(lim\t),if(p==q,next);listput(v,t*q^2)));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A179646 (Python) %o A179646 from math import isqrt %o A179646 from sympy import primepi, primerange, integer_nthroot %o A179646 def A189988(n): %o A179646 def bisection(f,kmin=0,kmax=1): %o A179646 while f(kmax) > kmax: kmax <<= 1 %o A179646 kmin = kmax >> 1 %o A179646 while kmax-kmin > 1: %o A179646 kmid = kmax+kmin>>1 %o A179646 if f(kmid) <= kmid: %o A179646 kmax = kmid %o A179646 else: %o A179646 kmin = kmid %o A179646 return kmax %o A179646 def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0]) %o A179646 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A179646 Cf. A030636, A046308, A007774. %Y A179646 Cf. A085548, A085965, A085967. %K A179646 nonn %O A179646 1,1 %A A179646 _Vladimir Joseph Stephan Orlovsky_, Jul 21 2010