This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179666 #29 Apr 22 2025 04:11:13 %S A179666 432,648,2000,5000,5488,10125,16875,19208,21296,27783,35152,64827, %T A179666 78608,107811,109744,117128,177957,194672,214375,228488,300125,390224, %U A179666 395307,397953,476656,555579,668168,771147,810448,831875 %N A179666 Products of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3). %H A179666 T. D. Noe, <a href="/A179666/b179666.txt">Table of n, a(n) for n = 1..1000</a> %H A179666 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures/">List of Prime Signatures</a> %H A179666 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A179666 Sum_{n>=1} 1/a(n) = P(3)*P(4) - P(7) = A085541 * A085964 - A085967 = 0.005171..., where P is the prime zeta function. - _Amiram Eldar_, Jul 06 2020 %t A179666 f[n_]:=Sort[Last/@FactorInteger[n]]=={3,4}; Select[Range[10^6], f] %t A179666 With[{nn=40},Select[Flatten[{#[[1]]^4 #[[2]]^3,#[[1]]^3 #[[2]]^4}&/@ Subsets[ Prime[Range[nn]],{2}]]//Union,#<=16nn^3&]] (* _Harvey P. Dale_, Nov 15 2020 *) %o A179666 (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\8)^(1/4),t=p^4;forprime(q=2,(lim\t)^(1/3),if(p==q,next);listput(v,t*q^3)));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A179666 (Python) %o A179666 from sympy import primepi, integer_nthroot, primerange %o A179666 def A179666(n): %o A179666 def bisection(f,kmin=0,kmax=1): %o A179666 while f(kmax) > kmax: kmax <<= 1 %o A179666 kmin = kmax >> 1 %o A179666 while kmax-kmin > 1: %o A179666 kmid = kmax+kmin>>1 %o A179666 if f(kmid) <= kmid: %o A179666 kmax = kmid %o A179666 else: %o A179666 kmin = kmid %o A179666 return kmax %o A179666 def f(x): return n+x-sum(primepi(integer_nthroot(x//p**4,3)[0]) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,7)[0]) %o A179666 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A179666 Cf. A046308, A030638, A007774. %Y A179666 Cf. A085541, A085964, A085967. %K A179666 nonn %O A179666 1,1 %A A179666 _Vladimir Joseph Stephan Orlovsky_, Jul 23 2010