This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179671 #19 Feb 21 2025 19:53:29 %S A179671 864,1944,4000,10976,25000,30375,42592,70304,83349,84375,134456, %T A179671 157216,219488,323433,389344,453789,533871,780448,953312,1071875, %U A179671 1193859,1288408,1620896,1666737,2100875,2205472,2544224,2956581,2970344,3322336,4159375,4348377 %N A179671 Products of the 5th power of a prime and a distinct prime of the 3rd power (p^5*q^3). %H A179671 T. D. Noe, <a href="/A179671/b179671.txt">Table of n, a(n) for n = 1..1000</a> %H A179671 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A179671 Sum_{n>=1} 1/a(n) = P(3)*P(5) - P(8) = A085541 * A085965 - A085968 = 0.002187..., where P is the prime zeta function. - _Amiram Eldar_, Jul 06 2020 %t A179671 f[n_]:=Sort[Last/@FactorInteger[n]]=={3,5}; Select[Range[10^6], f] %o A179671 (Python) %o A179671 from sympy import primepi, integer_nthroot, primerange %o A179671 def A179671(n): %o A179671 def bisection(f,kmin=0,kmax=1): %o A179671 while f(kmax) > kmax: kmax <<= 1 %o A179671 kmin = kmax >> 1 %o A179671 while kmax-kmin > 1: %o A179671 kmid = kmax+kmin>>1 %o A179671 if f(kmid) <= kmid: %o A179671 kmax = kmid %o A179671 else: %o A179671 kmin = kmid %o A179671 return kmax %o A179671 def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,8)[0]) %o A179671 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A179671 Cf. A085541, A085965, A085968. %K A179671 nonn %O A179671 1,1 %A A179671 _Vladimir Joseph Stephan Orlovsky_, Jul 23 2010