A179682 Least integer, k, greater than n such that t(k)*t(n) form a perfect square; t(i) is the i-th triangular number (A000217).
1, 8, 24, 48, 80, 120, 168, 224, 49, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 242, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280, 8648
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
f:= proc(n) local F,t,p,k0,d,k,a,j; p:= max(map(t -> `if`(t[2]::odd, t[1],NULL), [op(ifactors(n)[2]),op(ifactors(n+1)[2])])); if n mod p = 0 then k0:= n+p-1; d:= 1; else k0:= n+1; d:= p-1; fi; t:= n*(n+1)/4; for a from k0 by p do for k in [a, a+d] do if issqr(k*(k+1)*t) then return k fi od od end proc: f(0):= 1: map(f, [$0..100]); # Robert Israel, Feb 15 2019
-
Mathematica
f[n_] := Block[{k = n + 1, n2 = n (n + 1)/2}, While[ !IntegerQ@ Sqrt[n2*k (k + 1)/2], k++ ]; k]; Array[f, 47, 0]
-
Python
from sympy.ntheory.primetest import is_square def A179682(n): m = n*(n+1)>>1 k = n+1 while not is_square(m*k*(k+1)>>1): k += 1 return k # Chai Wah Wu, Mar 13 2023
Formula
Extensions
Incorrect empirical g.f. removed by Robert Israel, Feb 15 2019
Comments