This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179689 #33 Feb 21 2025 19:39:02 %S A179689 1152,3200,6272,8748,15488,21632,36992,46208,54675,67712,107163, %T A179689 107648,123008,175232,215168,236672,264627,282752,312500,359552, %U A179689 369603,445568,476288,574592,632043,645248,682112,703125,789507,798848,881792,1013888 %N A179689 Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q distinct primes. %H A179689 T. D. Noe, <a href="/A179689/b179689.txt">Table of n, a(n) for n = 1..1000</a> %H A179689 OEIS Wiki, <a href="http://oeis.org/wiki/Prime_signature#Numbers_with_same_prime_signature">Numbers with same prime signature</a>. %H A179689 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %F A179689 Sum_{n>=1} 1/a(n) = P(2)*P(7) - P(9) = A085548 * A085967 - A085969 = 0.001741..., where P is the prime zeta function. - _Amiram Eldar_, Jul 06 2020 %p A179689 a:= proc(n) option remember; local k; %p A179689 for k from 1+ `if` (n=1, 1, a(n-1)) %p A179689 while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2] %p A179689 do od; k %p A179689 end: %p A179689 seq (a(n), n=1..32); # _Alois P. Heinz_, Jan 23 2011 %t A179689 f[n_]:=Sort[Last/@FactorInteger[n]]=={2,7}; Select[Range[10^6], f] %o A179689 (PARI) list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/7), t=p^7;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A179689 (Python) %o A179689 from math import isqrt %o A179689 from sympy import primepi, integer_nthroot, primerange %o A179689 def A179689(n): %o A179689 def bisection(f,kmin=0,kmax=1): %o A179689 while f(kmax) > kmax: kmax <<= 1 %o A179689 kmin = kmax >> 1 %o A179689 while kmax-kmin > 1: %o A179689 kmid = kmax+kmin>>1 %o A179689 if f(kmid) <= kmid: %o A179689 kmax = kmid %o A179689 else: %o A179689 kmin = kmid %o A179689 return kmax %o A179689 def f(x): return n+x-sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))+primepi(integer_nthroot(x,9)[0]) %o A179689 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A179689 Cf. A006881, A007304, A065036, A085986, A085987, A092759, A178739, A179642, A179643, A179644, A179645, A179646, A179664, A179665, A179666, A179667, A179668, A179669, A179670, A179671, A179672, A179688. %Y A179689 Cf. A085548, A085967, A085969. %K A179689 nonn %O A179689 1,1 %A A179689 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010 %E A179689 Title edited by _Daniel Forgues_, Jan 22 2011