This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179690 #16 Mar 05 2024 11:26:19 %S A179690 1260,1980,2100,2340,2772,2940,3060,3150,3276,3300,3420,3900,4140, %T A179690 4284,4410,4788,4950,5100,5148,5220,5580,5700,5796,5850,6468,6660, %U A179690 6732,6900,7260,7308,7350,7380,7524,7644,7650,7700,7740,7812,7956,8460,8550,8700 %N A179690 Numbers of the form p^2*q^2*r*s where p, q, r, and s are distinct primes. %H A179690 T. D. Noe, <a href="/A179690/b179690.txt">Table of n, a(n) for n = 1..1000</a> %H A179690 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %H A179690 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %t A179690 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2,2}; Select[Range[10000], f] %o A179690 (PARI) list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtint(lim\60), t1=p^2; forprime(q=2,sqrtint(lim\(6*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016 %Y A179690 Part of the list A178739 .. A179696 and A030514 .. A030629, A189975 .. A189990 etc., cf. A101296. - _M. F. Hasler_, Jul 17 2019 %K A179690 nonn %O A179690 1,1 %A A179690 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010