This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179691 #31 Apr 22 2025 04:12:50 %S A179691 1440,2016,2400,3168,3744,4704,4860,4896,5472,5600,6624,6804,7840, %T A179691 8352,8800,8928,10400,10656,10692,11616,11808,12150,12384,12636,13536, %U A179691 13600,15200,15264,16224,16524,16992,17248,17568,18400,18468,19296,19360 %N A179691 Numbers p^5*q^2*r where p, q, r are 3 distinct primes. %H A179691 T. D. Noe, <a href="/A179691/b179691.txt">Table of n, a(n) for n = 1..1000</a> %H A179691 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures/">List of Prime Signatures</a> %H A179691 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %t A179691 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,5}; Select[Range[20000], f] %o A179691 (PARI) list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 24 2011 %o A179691 (Python) %o A179691 from math import isqrt %o A179691 from sympy import primepi, primerange, integer_nthroot %o A179691 def A179691(n): %o A179691 def bisection(f,kmin=0,kmax=1): %o A179691 while f(kmax) > kmax: kmax <<= 1 %o A179691 kmin = kmax >> 1 %o A179691 while kmax-kmin > 1: %o A179691 kmid = kmax+kmin>>1 %o A179691 if f(kmid) <= kmid: %o A179691 kmax = kmid %o A179691 else: %o A179691 kmin = kmid %o A179691 return kmax %o A179691 def f(x): return n+x-sum(primepi(x//(p**5*q**2)) for p in primerange(integer_nthroot(x,5)[0]+1) for q in primerange(isqrt(x//p**5)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+sum(primepi(x//p**7) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,8)[0])<<1) %o A179691 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A179691 Part of the list A178739 .. A179696 (and A030514 .. A030629, A189982 .. A189990 etc, cf. A101296). - _M. F. Hasler_, Jul 17 2019 %Y A179691 Subsequence of A175746 (numbers with 36 divisors). %K A179691 nonn %O A179691 1,1 %A A179691 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010 %E A179691 Name improved by _M. F. Hasler_, Jul 17 2019