This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179692 #17 Feb 21 2025 19:39:16 %S A179692 1536,2560,3584,5632,6656,8704,9728,11776,14848,15872,18944,20992, %T A179692 22016,24064,27136,30208,31232,34304,36352,37376,39366,40448,42496, %U A179692 45568,49664,51712,52736,54784,55808,57856,65024,67072,70144,71168,76288,77312,80384,83456 %N A179692 Numbers of the form p^9*q where p and q are distinct primes. %H A179692 T. D. Noe, <a href="/A179692/b179692.txt">Table of n, a(n) for n = 1..1000</a> %H A179692 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %t A179692 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,9}; Select[Range[90000], f] %o A179692 (PARI) list(lim)=my(v=List(),t);forprime(p=2, (lim\2)^(1/9), t=p^9;forprime(q=2, lim\t, if(p==q, next);listput(v,t*q))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 24 2011 %o A179692 (Python) %o A179692 from sympy import primepi, integer_nthroot, primerange %o A179692 def A179692(n): %o A179692 def bisection(f,kmin=0,kmax=1): %o A179692 while f(kmax) > kmax: kmax <<= 1 %o A179692 kmin = kmax >> 1 %o A179692 while kmax-kmin > 1: %o A179692 kmid = kmax+kmin>>1 %o A179692 if f(kmid) <= kmid: %o A179692 kmax = kmid %o A179692 else: %o A179692 kmin = kmid %o A179692 return kmax %o A179692 def f(x): return n+x-sum(primepi(x//p**9) for p in primerange(integer_nthroot(x,9)[0]+1))+primepi(integer_nthroot(x,10)[0]) %o A179692 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A179692 Cf. A006881, A007304, A065036, A085986, A085987, A092759, A178739, A179642, A179643, A179644, A179645, A179646, A179664, A179665, A179666, A179667, A179668, A179669, A179670, A179671, A179672, A179688, A179689, A179690, A179691. %K A179692 nonn %O A179692 1,1 %A A179692 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010