This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179696 #34 Apr 22 2025 04:16:13 %S A179696 1920,2688,4224,4480,4992,6528,7040,7296,8320,8832,9856,10880,11136, %T A179696 11648,11904,12160,14208,14720,15232,15744,16512,17024,18048,18304, %U A179696 18560,19840,20352,20608,21870,22656,23424,23680,23936,25728,25984,26240,26752,27264 %N A179696 Numbers with prime signature {7,1,1}, i.e., of form p^7*q*r with p, q and r distinct primes. %H A179696 T. D. Noe, <a href="/A179696/b179696.txt">Table of n, a(n) for n = 1..1000</a> %H A179696 Will Nicholes <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures/">List of Prime Signatures</a> %H A179696 OEIS Wiki, <a href="http://oeis.org/wiki/Prime_signature#Numbers_with_same_prime_signature">Numbers with same prime signature</a>. %p A179696 a:= proc(n) option remember; local k; %p A179696 for k from 1+ `if` (n=1, 1, a(n-1)) %p A179696 while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 1, 1] %p A179696 do od; k %p A179696 end: %p A179696 seq (a(n), n=1..40); # _Alois P. Heinz_, Jan 23 2011 %t A179696 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,7}; Select[Range[30000], f] %o A179696 (PARI) list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/7), t1=p^7;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A179696 (Python) %o A179696 from math import isqrt %o A179696 from sympy import primerange, primepi, integer_nthroot %o A179696 def A179696(n): %o A179696 def bisection(f,kmin=0,kmax=1): %o A179696 while f(kmax) > kmax: kmax <<= 1 %o A179696 kmin = kmax >> 1 %o A179696 while kmax-kmin > 1: %o A179696 kmid = kmax+kmin>>1 %o A179696 if f(kmid) <= kmid: %o A179696 kmax = kmid %o A179696 else: %o A179696 kmin = kmid %o A179696 return kmax %o A179696 def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**7)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,7)[0]+1))+sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))-primepi(integer_nthroot(x,9)[0]) %o A179696 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A179696 Cf. A006881, A007304, A065036, A085986, A085987, A092759, A178739, A179642, A179643, A179644, A179645, A179646, A179664, A179665, A179666, A179667, A179668, A179669, A179670, A179671, A179672, A179688, A179689, A179690, A179691, A179692, A179693, A179694, A179695. %K A179696 nonn %O A179696 1,1 %A A179696 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010 %E A179696 Title edited by _Daniel Forgues_, Jan 22 2011