This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179698 #20 Apr 22 2025 04:16:10 %S A179698 2160,3024,3240,4536,4752,5616,6000,7128,7344,8208,8424,9936,11016, %T A179698 12312,12528,13392,14000,14904,15000,15984,16464,17712,18576,18792, %U A179698 20088,20250,20304,22000,22896,23976,25488,26000,26352,26568,27440 %N A179698 Numbers of the form p^4*q^3*r where p, q, and r are distinct primes. %H A179698 T. D. Noe, <a href="/A179698/b179698.txt">Table of n, a(n) for n = 1..1000</a> %H A179698 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures/">List of Prime Signatures</a> %H A179698 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %t A179698 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,3,4}; Select[Range[30000], f] %o A179698 (PARI) list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\24)^(1/4), t1=p^4;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 24 2011 %o A179698 (Python) %o A179698 from sympy import primepi, primerange, integer_nthroot %o A179698 def A179698(n): %o A179698 def bisection(f,kmin=0,kmax=1): %o A179698 while f(kmax) > kmax: kmax <<= 1 %o A179698 kmin = kmax >> 1 %o A179698 while kmax-kmin > 1: %o A179698 kmid = kmax+kmin>>1 %o A179698 if f(kmid) <= kmid: %o A179698 kmax = kmid %o A179698 else: %o A179698 kmin = kmid %o A179698 return kmax %o A179698 def f(x): return n+x-sum(primepi(x//(p**4*q**3)) for p in primerange(integer_nthroot(x,4)[0]+1) for q in primerange(integer_nthroot(x//p**4,3)[0]+1))+sum(primepi(integer_nthroot(x//p**4,4)[0]) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(x//p**7) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,8)[0])<<1) %o A179698 return bisection(f,n,n) # _Chai Wah Wu_, Mar 28 2025 %K A179698 nonn %O A179698 1,1 %A A179698 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010