This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179700 #11 May 20 2017 11:32:53 %S A179700 2520,3780,3960,4200,4680,5544,5880,5940,6120,6552,6600,6840,7020, %T A179700 7800,8280,8316,8568,9180,9450,9576,9828,10200,10260,10296,10440, %U A179700 10500,11160,11400,11592,12420,12852,12936,13230,13320,13464,13800,14364,14520 %N A179700 Numbers of the form p^3*q^2*r*s where p, q, r, and s are distinct primes. %H A179700 T. D. Noe, <a href="/A179700/b179700.txt">Table of n, a(n) for n = 1..1000</a> %H A179700 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a> %H A179700 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %t A179700 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2,3};Select[Table[n,{n,8!}],f[ # ]&] %o A179700 (PARI) list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\60, 3), t1=p^3; forprime(q=2,sqrtint(lim\(6*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016 %K A179700 nonn %O A179700 1,1 %A A179700 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010