This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179702 #36 Apr 22 2025 04:16:07 %S A179702 2592,3888,20000,50000,76832,151875,253125,268912,468512,583443, %T A179702 913952,1361367,2576816,2672672,3557763,4170272,5940688,6940323, %U A179702 7503125,8954912,10504375,13045131,20295603,22632992,22717712,29552672,30074733 %N A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes. %C A179702 Subsequence of A046312 and of A137493. - _R. J. Mathar_, Jul 27 2010 %H A179702 T. D. Noe, <a href="/A179702/b179702.txt">Table of n, a(n) for n = 1..1000</a> %H A179702 Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures/">List of Prime Signatures</a> %F A179702 Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - _Amiram Eldar_, Jul 06 2020 %t A179702 fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by _Robert G. Wilson v_, Aug 26 2010 *) %t A179702 lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* _Robert G. Wilson v_, Aug 26 2010 *) %t A179702 Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* _Harvey P. Dale_, Jan 01 2012 *) %o A179702 (PARI) list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A179702 (Python) %o A179702 from sympy import primepi, integer_nthroot, primerange %o A179702 def A179702(n): %o A179702 def bisection(f,kmin=0,kmax=1): %o A179702 while f(kmax) > kmax: kmax <<= 1 %o A179702 kmin = kmax >> 1 %o A179702 while kmax-kmin > 1: %o A179702 kmid = kmax+kmin>>1 %o A179702 if f(kmid) <= kmid: %o A179702 kmax = kmid %o A179702 else: %o A179702 kmin = kmid %o A179702 return kmax %o A179702 def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0]) %o A179702 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A179702 Cf. A006881, A007304, A065036, A085986, A085987, A092759, A178739, A179642, A179643, A179644, A179645, A179646, A179664, A179665, A179666, A179667, A179668, A179669, A179670, A179671, A179672, A179688, A179689, A179690, A179691, A179692, A179693, A179694, A179695, A179696, A179698, A179699, A179700. %Y A179702 Cf. A085964, A085965, A085969. %K A179702 nonn %O A179702 1,1 %A A179702 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010 %E A179702 Edited and extended by _Ray Chandler_ and _R. J. Mathar_, Jul 26 2010