cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179704 Numbers of the form p^5*q*r*s where p, q, r, and s are distinct primes.

This page as a plain text file.
%I A179704 #9 May 20 2017 11:59:18
%S A179704 3360,5280,6240,7392,8160,8736,9120,11040,11424,12320,12768,13728,
%T A179704 13920,14560,14880,15456,17010,17760,17952,19040,19488,19680,20064,
%U A179704 20640,20832,21216,21280,22560,22880,23712,24288,24864,25440,25760,26730
%N A179704 Numbers of the form p^5*q*r*s where p, q, r, and s are distinct primes.
%H A179704 T. D. Noe, <a href="/A179704/b179704.txt">Table of n, a(n) for n = 1..1000</a>
%H A179704 Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>
%H A179704 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>
%t A179704 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,5}; Select[Range[30000], f]
%o A179704 (PARI) list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\30, 5), t1=p^5; forprime(q=2,lim\(6*t1), if(q==p, next); t2=q*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016
%K A179704 nonn
%O A179704 1,1
%A A179704 _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010