This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179748 #27 Mar 07 2020 11:42:32 %S A179748 1,1,1,1,1,1,1,1,2,1,1,1,2,3,1,1,1,2,5,4,1,1,1,2,6,9,5,1,1,1,2,6,15, %T A179748 14,6,1,1,1,2,6,20,29,20,7,1,1,1,2,6,23,49,49,27,8,1,1,1,2,6,24,71,98, %U A179748 76,35,9,1,1,1,2,6,24,91,169,174,111,44,10,1,1,1,2,6,24,106,259,343,285,155,54,11,1 %N A179748 Triangle T(n,k) read by rows. T(n,1)=1, k > 1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1). %C A179748 Recurrence is half of the recurrence for divisibility in A051731. That is, without subtracting (Sum_{i=1..k-1} T(n-i,k)). %C A179748 Rows tend to factorial numbers. %C A179748 Row sums are A177510. %F A179748 T(n,1)=1, k > 1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1). %e A179748 Triangle begins: %e A179748 01: 1; %e A179748 02: 1, 1; %e A179748 03: 1, 1, 1; %e A179748 04: 1, 1, 2, 1; %e A179748 05: 1, 1, 2, 3, 1; %e A179748 06: 1, 1, 2, 5, 4, 1; %e A179748 07: 1, 1, 2, 6, 9, 5, 1; %e A179748 08: 1, 1, 2, 6, 15, 14, 6, 1; %e A179748 09: 1, 1, 2, 6, 20, 29, 20, 7, 1; %e A179748 10: 1, 1, 2, 6, 23, 49, 49, 27, 8, 1; %e A179748 11: 1, 1, 2, 6, 24, 71, 98, 76, 35, 9, 1; %e A179748 12: 1, 1, 2, 6, 24, 91, 169, 174, 111, 44, 10, 1; %e A179748 13: 1, 1, 2, 6, 24, 106, 259, 343, 285, 155, 54, 11, 1; %e A179748 14: 1, 1, 2, 6, 24, 115, 360, 602, 628, 440, 209, 65, 12, 1; %e A179748 15: 1, 1, 2, 6, 24, 119, 461, 961, 1230, 1068, 649, 274, 77, 13, 1; %e A179748 16: 1, 1, 2, 6, 24, 120, 551, 1416, 2191, 2298, 1717, 923, 351, 90, 14, 1; %e A179748 17: 1, 1, 2, 6, 24, 120, 622, 1947, 3606, 4489, 4015, 2640, 1274, 441, 104, 15, 1; %e A179748 ... %o A179748 (Excel cell formula European dot comma style) =if(column()=1; 1; if(row()>=column(); sum(indirect(address(row()-column()+1; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4)); 0)) %o A179748 (Sage) %o A179748 @CachedFunction %o A179748 def T(n, k): # A179748 %o A179748 if n == 0: return int(k==0); %o A179748 if k == 1: return int(n>=1); %o A179748 return sum( T(n-i, k-1) for i in [1..k-1] ); %o A179748 for n in [1..15]: print([ T(n, k) for k in [1..n] ]) %o A179748 # _Joerg Arndt_, Mar 24 2014 %Y A179748 Cf. A175105, A051731, A179749, A179750, A000142. %K A179748 nonn,tabl %O A179748 1,9 %A A179748 _Mats Granvik_, Jul 26 2010