This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179783 #20 Mar 04 2023 15:33:35 %S A179783 1,3,17,39,81,139,225,335,481,659,881,1143,1457,1819,2241,2719,3265, %T A179783 3875,4561,5319,6161,7083,8097,9199,10401,11699,13105,14615,16241, %U A179783 17979,19841,21823,23937,26179,28561,31079 %N A179783 a(n) = 2*n*(n+1)*(n+2)/3 + (-1)^n. %C A179783 First differences in 2*A081352. %C A179783 Second differences in 4*A004442. %H A179783 B. Berselli, <a href="/A179783/b179783.txt">Table of n, a(n) for n = 0..10000</a>. %H A179783 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A179783 G.f.: (1+10*x^2-4*x^3+x^4)/((1+x)*(1-x)^4); exp(-x)+(2/3)*exp(x)*x*(6+6*x+x^2). %F A179783 a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4. %F A179783 a(n) = 4*A000292(n)+(-1)^n. %t A179783 LinearRecurrence[{3,-2,-2,3,-1},{1,3,17,39,81},40] (* _Harvey P. Dale_, Mar 04 2023 *) %o A179783 (Magma) [(2/3)*n*(n+1)*(n+2)+(-1)^n: n in [0..35]]; %o A179783 (PARI) for(n=0, 35, print1((2/3)*n*(n+1)*(n+2)+(-1)^n", ")); %Y A179783 Cf. A005744, A026035, A175109, A131941. %K A179783 nonn,easy %O A179783 0,2 %A A179783 _Bruno Berselli_, Jul 29 2010 - Sep 07 2010