This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179798 #5 Sep 08 2023 22:39:28 %S A179798 92,1679,39281,89927,296863,1530322,12056004,55972895,67903894, %T A179798 102383343,641211875,5148097536,13764973788,19839459725,87957606400, %U A179798 113794567580,126889914716,146745583311,880304597278,1154049177924 %N A179798 Record minima of the positive distance d between the 11th power of a positive integer x and the square of an integer y such that d = x^13 - y^2 (x <> k^2 and y <> k^13). %C A179798 Distance d is equal to 0 when x = k^2 and y = k^13. %C A179798 For x values see A179799. %C A179798 For x values see A179800. %C A179798 Conjecture (_Artur Jasinski_): %C A179798 For any positive number x >= A179799(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^13) can't be less than A179798(n). %t A179798 d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd %Y A179798 Cf. A179107, A179108, A179109, A179386, A179387, A179388, A179407, A179408, A179784, A179785, A179786, A179790, A179791, A179792, A179793, A179794, A179795, A179798, A179799, A179800. %K A179798 nonn %O A179798 1,1 %A A179798 _Artur Jasinski_, Jul 27 2010