This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179817 #10 Apr 14 2021 18:15:03 %S A179817 1,2,4,8,14,27,48,86,151,269,460,808,1386,2372,4048,6890,11661,19719, %T A179817 33167,55705,93288,155954,260040,432895,719252,1192989,1975724, %U A179817 3267513,5396171,8900534,14663096 %N A179817 Maximally refined partitions into distinct parts (of any natural number) with n parts. %C A179817 For the definition, see sequence A179009. This sequence counts the same objects using a different statistic, the number of parts rather than their sum. %e A179817 For n=2, the partitions being counted are: %e A179817 2+1, 3+1, 4+1, 3+2. %e A179817 For n=3, the partitions are: %e A179817 3+2+1, 4+2+1, 5+2+1, 6+2+1, %e A179817 4+3+1, 5+3+1, 6+4+1, 4+3+2. %o A179817 (PARI) %o A179817 ok(k,b)={for(i=1, (k-1)\2, if(bittest(b,i) && bittest(b,k-i), return(0))); 1} %o A179817 a(n)={((k,w,b)->if(w==n, 1, if(k<=2*w+1, self()(k+1, w, bitor(b,1<<k))) + if(ok(k,b), self()(k+1, w+1, b))))(1,0,0)} \\ _Andrew Howroyd_, Apr 14 2021 %Y A179817 Cf. A179009, A179822. %K A179817 nonn,more %O A179817 0,2 %A A179817 _Moshe Shmuel Newman_, Jan 10 2011 %E A179817 a(0)=1 prepended and a(19)-a(30) from _Andrew Howroyd_, Apr 14 2021