This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179862 #26 Dec 21 2015 03:03:31 %S A179862 1,4,9,19,33,59,93,150,226,342,494,721,1011,1425,1960,2695,3633,4903, %T A179862 6506,8633,11312,14796,19157,24773,31744,40608,51578,65372,82341, %U A179862 103522,129428,161505,200589,248614,306869,378051,463987,568387,693989,845754,1027625 %N A179862 An unrestricted partition statistic: sum of A179864 over row n. %C A179862 Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n minus the number of partitions of n. - _Omar E. Pol_, Jul 15 2013 %C A179862 Sum of the hook-lengths of the (1,1)-cells of the Ferrers diagrams over all partitions of n. Example: a(3) = 9 because in each of the partitions 3, 21, and 111 the (1,1)-cell has hook-length 3. Comment follows at once from the previous comment. - _Emeric Deutsch_, Dec 20 2015 %F A179862 a(n) = Sum_{k=1..A000041(n)} A179864(n,k). %F A179862 a(n) = A211978(n) - A000041(n). - _Omar E. Pol_, Jul 15 2013 %F A179862 a(n) = A225600(A139582(n)-1), n>= 1. - _Omar E. Pol_, Jul 25 2013 %e A179862 From _Omar E. Pol_, Jul 15 2013: (Start) %e A179862 Illustration of initial terms using a Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). a(n) is the x-coordinate of the mentioned largest peak. Note that this Dyck path is infinite. %e A179862 . %e A179862 7.................................. %e A179862 . /\ %e A179862 5.................... / \ /\ %e A179862 . /\ / \ /\ / %e A179862 3.......... / \ / \ / \/ %e A179862 2..... /\ / \ /\/ \ / %e A179862 1.. /\ / \ /\/ \ / \ /\/ %e A179862 0 /\/ \/ \/ \/ \/ %e A179862 . 0,2, 6, 12, 24, 40... = A211978 %e A179862 . 1, 4, 9, 19, 33... = this sequence (End) %Y A179862 Cf. A179864. %K A179862 nonn %O A179862 1,2 %A A179862 _Alford Arnold_, Aug 02 2010 %E A179862 More terms from _Omar E. Pol_, Jul 15 2013