A179898 Triangle V(l,p) (l>=0, p=0..l) read by rows: see Formula for definition, see Comments for motivation.
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 14, 0, 10, 0, 1, 14, 0, 40, 0, 15, 0, 1, 0, 84, 0, 90, 0, 21, 0, 1, 84, 0, 300, 0, 175, 0, 28, 0, 1, 0, 594, 0, 825, 0, 308, 0, 36, 0, 1, 594, 0, 2475, 0, 1925, 0, 504, 0, 45, 0, 1, 0, 4719, 0, 7865, 0, 4004, 0, 780, 0, 55, 0, 1, 4719, 0, 22022, 0, 21021, 0, 7644, 0, 1155, 0, 66, 0, 1, 0, 40898, 0, 78078, 0, 49686, 0, 13650, 0, 1650, 0, 78, 0, 1, 40898, 0, 208208, 0, 231868, 0, 107016, 0, 23100, 0, 2288, 0, 91, 0, 1, 0, 379236, 0, 804440, 0, 606424, 0, 214200, 0, 37400, 0, 3094, 0, 105, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 0, 1; 0, 3, 0, 1; 3, 0, 6, 0, 1; 0, 14, 0, 10, 0, 1; 14, 0, 40, 0, 15, 0, 1; 0, 84, 0, 90, 0, 21, 0, 1; 84, 0, 300, 0, 175, 0, 28, 0, 1; 0, 594, 0, 825, 0, 308, 0, 36, 0, 1; 594, 0, 2475, 0, 1925, 0, 504, 0, 45, 0, 1; 0, 4719, 0, 7865, 0, 4004, 0, 780, 0, 55, 0, 1; 4719, 0, 22022, 0, 21021, 0, 7644, 0, 1155, 0, 66, 0, 1; 0, 40898, 0, 78078, 0, 49686, 0, 13650, 0, 1650, 0, 78, 0, 1; 40898, 0, 208208, 0, 231868, 0, 107016, 0, 23100, 0, 2288, 0, 91, 0, 1; ...
References
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986 (see |V_{l,p}| on page 114).
Crossrefs
Programs
-
Maple
V:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else l!*(l+2)!*(p+3)! / (((l-p)/2)!*((l-p)/2+1)!*p!*((l+p)/2+2)!*((l+p)/2+3)!); fi; end; r:=n->[seq( V(n,p),p=0..n)]; for n from 0 to 15 do lprint(r(n)); od:
-
Mathematica
v[l_, p_] := If[Mod[l-p, 2] == 1, 0, l!*(l+2)!*(p+3)!/(((l-p)/2)!*((l-p)/2+1)!*p!*((l+p)/2+2)!*((l+p)/2+3)!)]; Table[v[l, p], {l, 0, 15}, {p, 0, l}] // Flatten (* Jean-François Alcover, Jan 09 2014, translated from Maple *)
Formula
V(l,p) = 0 if l and p have opposite parity, otherwise V(l,p) = l!*(l+2)!*(p+3)!/(((l-p)/2)!*((l-p)/2+1)!*p!*((l+p)/2+2)!*((l+p)/2+3)!).
Comments