cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179901 Triangle read by rows, antidiagonals of an array generated from (1, r, r, r, ...) convolved with (1, 0, r, r, r, ...).

This page as a plain text file.
%I A179901 #9 Jan 03 2021 01:01:25
%S A179901 1,1,1,1,2,2,1,3,4,3,1,4,6,8,4,1,5,8,15,12,5,1,6,10,24,24,16,6,1,7,12,
%T A179901 35,40,33,20,7,1,8,14,48,60,56,42,24,8,1,9,16,63,84,85,70,51,28,9,1,
%U A179901 10,18,80,112,120,110,88,60,32,10,1,11,20,99,144,161,156,135,104,69,36,11
%N A179901 Triangle read by rows, antidiagonals of an array generated from (1, r, r, r, ...) convolved with (1, 0, r, r, r, ...).
%C A179901 Row sums = A179902: (1, 2, 5, 11, 23, 46, 87, 155, ...).
%F A179901 Triangle read by rows, antidiagonals of an array generated from (1, r, r, r, ...) convolved with (1, 0, r, r, r, ...), such that the r-th row of the array = (1, r, 2*r, ...) then for n > 3, a(n) = r^2 + a(n-1).
%e A179901 First few rows of the array:
%e A179901 .
%e A179901 1,.1,..2,...3,...4,...5,...6,...7,....8,...
%e A179901 1,.2,..4,...8,..12,..16...20,..24,...28,... = A019442
%e A179901 1,.3,..6,..15,..24,..33,..42,..51,...60,... = A179805
%e A179901 1,.4,..8,..24,..40,..56,..70,..88,..104,...
%e A179901 .
%e A179901 Example: row 4 = (1, 4, 8, 24, ...) = (1, 4, 4, 4, ...) * (1, 0, 4, 4, 4, ...) = (1, r, 2*r, (2*r + r^2), ...).
%e A179901 .
%e A179901 First few rows of the triangle:
%e A179901 .
%e A179901 1,
%e A179901 1, 1;
%e A179901 1, 2, 2;
%e A179901 1, 3, 4, 3;
%e A179901 1, 4, 6, 8, 4;
%e A179901 1, 5, 8, 15, 12, 5;
%e A179901 1, 6, 10, 24, 24, 16, 6;
%e A179901 1, 7, 12, 35, 40, 33, 20, 7;
%e A179901 1, 8, 14, 48, 60, 56, 42, 24, 8;
%e A179901 1, 9, 16, 63, 84, 85, 70, 51, 28, 9;
%e A179901 1, 10, 18, 80, 112, 120, 110, 88, 60, 32, 10;
%e A179901 1, 11, 20, 99, 144, 161, 156, 135, 104, 69, 36, 11;
%e A179901 1, 12, 22, 120, 180, 208, 210, 192, 160, 120, 78, 40, 12;
%e A179901 1, 13, 24, 143, 220, 261, 272, 259, 228, 185, 136, 87, 44, 13;
%e A179901 ...
%Y A179901 Cf. A019442, A179805
%K A179901 nonn,tabl
%O A179901 1,5
%A A179901 _Gary W. Adamson_, Jul 31 2010