A179927 Triangle of centered orthotopic numbers.
1, 1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 9, 13, 7, 2, 1, 17, 35, 25, 9, 2, 1, 33, 97, 91, 41, 11, 2, 1, 65, 275, 337, 189, 61, 13, 2, 1, 129, 793, 1267, 881, 341, 85, 15, 2
Offset: 0
Examples
1 1, 2 1, 3, 2 1, 5, 5, 2 1, 9, 13, 7, 2 1, 17, 35, 25, 9, 2 1, 33, 97, 91, 41, 11, 2
Links
- Peter Luschny, Figurate number - a very short introduction
Programs
-
Maple
E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x)); H := (n,x) -> E(n,x)*(1+x)/(1-x)^(n+1); A179927 := (n,k) -> coeff(series(H(n-k,x),x,18),x,k); seq(print(seq(A179927(n,k),k=0..n)),n=0..6);
-
Mathematica
e[0, ] = 1; e[n, x_] := e[n, x] = x(1-x) D[e[n-1, x], x] + e[n-1, x] (1 + (n-1)x); h[n_, x_] := e[n, x] (1+x)/(1-x)^(n+1); T[n_, k_] := SeriesCoefficient[h[n-k, x], {x, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019, from Maple *)
Comments