cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179927 Triangle of centered orthotopic numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 9, 13, 7, 2, 1, 17, 35, 25, 9, 2, 1, 33, 97, 91, 41, 11, 2, 1, 65, 275, 337, 189, 61, 13, 2, 1, 129, 793, 1267, 881, 341, 85, 15, 2
Offset: 0

Views

Author

Peter Luschny, Aug 02 2010

Keywords

Comments

T(n, k) = [x^k] series[ H(n - k, x) ]
Here H(n,x) = E(n,x)*(1+x)/(1-x)^(n+1) where E(n,x) are the Eulerian polynomials, E(0,x) = 1 and E(n,x) = sum_{k=0^{n-1}} W_{n,k} x^k for n > 0. W_{n,k} as in DLMF Table 26.14.1.

Examples

			1
1, 2
1, 3, 2
1, 5, 5, 2
1, 9, 13, 7, 2
1, 17, 35, 25, 9, 2
1, 33, 97, 91, 41, 11, 2
		

Crossrefs

Cf. Row sums in A179928, triangle of orthotopic numbers is A009998.

Programs

  • Maple
    E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x));
    H := (n,x) -> E(n,x)*(1+x)/(1-x)^(n+1);
    A179927 := (n,k) -> coeff(series(H(n-k,x),x,18),x,k);
    seq(print(seq(A179927(n,k),k=0..n)),n=0..6);
  • Mathematica
    e[0, ] = 1; e[n, x_] := e[n, x] = x(1-x) D[e[n-1, x], x] + e[n-1, x] (1 + (n-1)x);
    h[n_, x_] := e[n, x] (1+x)/(1-x)^(n+1);
    T[n_, k_] := SeriesCoefficient[h[n-k, x], {x, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019, from Maple *)