This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179936 #2 Mar 30 2012 18:37:22 %S A179936 1,0,6,0,540,0,156240,0,96480720,0,104661849600,0,177947471782080,0, %T A179936 439942718370355200,0,1499983925770422892800,0, %U A179936 6780179728814814933811200,0,39412342523061395825857920000,0 %N A179936 E.g.f. satisfies: A(A(x))^3 = A(x)^3 * A'(x). %F A179936 Let A_n(x) denote the n-th iteration of A(x), then %F A179936 . [A_{n+1}(x)]^3 = A(x)^3 * A_n'(x) for all n, %F A179936 and A = A(x) satisfies: %F A179936 . A = x + A^3 + A^3*D(A^3)/2! + A^3*D(A^3*D(A^3))/3! + A^3*D(A^3*D(A^3*D(A^3)))/4! + ...; %F A179936 . A_n(x) = x + n*A^3 + n^2*A^3*D(A^3)/2! + n^3*A^3*D(A^3*D(A^3))/3! + n^4*A^3*D(A^3*D(A^3*D(A^3)))/4! + ... %F A179936 where operator D(F) = d/dx F. %e A179936 E.g.f: A(x) = x + 6*x^3/3! + 540*x^5/5! + 156240*x^7/7! + 96480720*x^9/9! + 104661849600*x^11/11! + 177947471782080*x^13/13! + 439942718370355200*x^15/15! +... %e A179936 Related expansions: %e A179936 A(x)^3 = 6*x^3/3! + 360*x^5/5! + 83160*x^7/7! + 43908480*x^9/9! +... %e A179936 A(A(x)) = x + 12*x^3/3! + 1440*x^5/5! + 509040*x^7/7! + 368686080*x^9/9! +... %e A179936 A(A(x))^3 = 6*x^3/3! + 720*x^5/5! + 241920*x^7/7! + 165110400*x^9/9! +... %e A179936 A'(x) = 1 + 6*x^2/2! + 540*x^4/4! + 156240*x^6/6! + 96480720*x^8/8! +... %o A179936 (PARI) /* Coefficients of A_m(x) = m-th iteration of A(x): */ %o A179936 {a(n,m=1)=local(A=x+x^3,D);for(i=1,n,D=x;A=x+sum(k=1,n,m^k*(D=(A+x*O(x^n))^3*deriv(D))/k!));if(n<1,0,n!*polcoeff(A,n))} %Y A179936 Cf. A179497 (variant). %K A179936 eigen,nonn %O A179936 1,3 %A A179936 _Paul D. Hanna_, Aug 02 2010