This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179954 #31 Feb 16 2025 08:33:12 %S A179954 0,0,0,8,2,5,8,9,0,3,4,7,9,1,9,2,5,2,9,3,8,6,0,7,9,5,7,7,5,0,1,7,8,9, %T A179954 1,3,5,4,3,2,5,3,7,9,2,9,9,6,5,8,8,7,3,8,5,7,2,9,7,7,1,5,2,8,3,4,5,9, %U A179954 6,8,1,7,7,9,0,6,0,8,8,3,1,0,9,7,1,5,9,4,1,2,0,1,8,9,7,0,1,3,9,6,0,9,9,3,9 %N A179954 Decimal expansion of the sum of the reciprocals of pandigital numbers in which each digit appears exactly once. %C A179954 This is example in 3. 1(a) of R. Baillie, revised. %C A179954 This is a finite sum so it is a rational number. %H A179954 Robert Baillie, <a href="http://www.jstor.org/stable/2321096">Sums of reciprocals of integers missing a given digit</a>, Amer. Math. Monthly, 86 (1979), 372-374. %H A179954 Robert Baillie, <a href="http://arxiv.org/abs/0806.4410">Summing The Curious Series Of Kempner and Irwin</a>, arXiv:0806.4410 [math.CA], 2008-2015. %H A179954 Wolfram Library Archive, KempnerSums.nb (8.6 KB) - Mathematica Notebook, <a href="http://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a> %H A179954 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Digit.html">Digit</a> %H A179954 Wikipedia, <a href="http://en.wikipedia.org/wiki/Kempner_series">Kempner series</a> %F A179954 Sum_{k=1..3265920} 1/A050278(k). %e A179954 0.0008258903479192529386079577501789135432537929965887385729771528345968177... %Y A179954 Cf. A050278, A010784, A082830-A082839, A140502, A160502. %K A179954 cons,nonn,base %O A179954 0,4 %A A179954 _Robert G. Wilson v_, Aug 03 2010 %E A179954 Standardized offset and leading zeros from _R. J. Mathar_, Aug 06 2010 %E A179954 More terms from _Robert G. Wilson v_, Sep 07 2010