This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179970 #15 Feb 16 2025 08:33:12 %S A179970 0,1,2,3,4,6,9,11,12,14,17,19,25,27,36,38,44,46,49,51,57,59,68,70,76, %T A179970 78,100,102,108,110,145,147,153,155,177,179,185,187,196,198,204,206, %U A179970 228,230,236,238,273,275,281,283,305,307,313,315,401,403,409,411,433,435 %N A179970 Numbers such that in base-4 representation all sums of two adjacent digits are odd. %C A179970 If m is a term with m mod 4 < 2 then is also m+2 a term; %C A179970 0 <= a(2*n-1) mod 4 <= 1 and 2 <= a(2*n) mod 4 <= 3; %C A179970 a(n) mod 2 = 1 - a(floor((n-1)/2)) mod 2; %C A179970 a(n) mod 4 = a(n) mod 2 + 2*(1 - n mod 2); %C A179970 floor(a(n)/4) = a(floor((n-1)/2)); %C A179970 in binary representation there are no runs of more than 3 zeros or 3 ones: subsequence of A166535. %H A179970 R. Zumkeller, <a href="/A179970/b179970.txt">Table of n, a(n) for n = 1..10000</a> %H A179970 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Quaternary.html">Quaternary</a> %H A179970 <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>. %F A179970 Let m = a(floor((n-1)/2)), then for n > 3: %F A179970 a(n) = 4*m - m mod 2 + 1 + 2*(1 - n mod 2). %e A179970 a(10)=14->base4:32->base2:1110; %e A179970 a(100)=1126->base4:101212->base2:10001100110; %e A179970 a(1000)=113043->base4:123212103->base2:11011100110010011. %t A179970 Select[Range[0,500],And@@OddQ[Total/@Partition[IntegerDigits[#,4],2,1]]&] (* _Harvey P. Dale_, Aug 19 2012 *) %Y A179970 Cf. A000975, A007088, A007090. %K A179970 base,nonn,easy %O A179970 1,3 %A A179970 _Reinhard Zumkeller_, Aug 04 2010