cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179999 Length of the n-th term in the modified Look and Say sequence A110393.

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 10, 14, 18, 24, 30, 40, 50, 66, 82, 108, 134, 176, 218, 286, 354, 464, 574, 752, 930, 1218, 1506, 1972, 2438, 3192, 3946, 5166, 6386, 8360, 10334, 13528, 16722, 21890, 27058, 35420, 43782, 57312, 70842, 92734, 114626, 150048
Offset: 1

Views

Author

Nathaniel Johnston, Jan 13 2011

Keywords

Comments

The average multiplicative growth from the n-th term to the (n+1)-st term is sqrt(phi) = 1.272..., where phi = (1+sqrt(5))/2 is the golden ratio, see A139339.

Examples

			The 6th term in A110393 is 21112211, so a(6) = 8.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1+x) (-1-x+x^2) (1-x+x^2))/((1-x) (-1+x^2+x^4)),{x,0,99}],x] (* Peter J. C. Moses, Jun 23 2013 *)
  • PARI
    Vec(x*(1 + x)*(1 + x - x^2)*(1 - x + x^2) / ((1 - x)*(1 - x^2 - x^4)) + O(x^50)) \\ Colin Barker, Aug 10 2019

Formula

a(n) = length(A110393(n)).
From Colin Barker, Aug 10 2019: (Start)
G.f.: x*(1 + x)*(1 + x - x^2)*(1 - x + x^2) / ((1 - x)*(1 - x^2 - x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n>6. (End)
From A.H.M. Smeets, Aug 10 2019 (Start)
Limit_{n->oo} a(n+1)/a(n) = (1+phi)/2 = (3+sqrt(5))/4 = A239798 for odd n.
Limit_{n->oo} a(n+1)/a(n) = 2/phi = 4/(1+sqrt(5)) = A134972 for even n.
Limit_{n->oo} a(n+2)/a(n) = (1+phi)/phi = phi = A001622. (End)
For odd n > 1, a(n) = 4*Fibonacci((n + 1)/2) - 2. For even n, a(n) = 2*Fibonacci(n/2 + 2) - 2. - Ehren Metcalfe, Aug 10 2019