This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180000 #22 May 08 2020 16:58:54 %S A180000 1,1,1,1,2,2,3,3,12,4,10,10,30,30,105,7,56,56,252,252,1260,60,330,330, %T A180000 1980,396,2574,286,2002,2002,15015,15015,240240,7280,61880,1768,15912, %U A180000 15912,151164,3876,38760,38760,406980,406980,4476780,99484,1144066 %N A180000 a(n) = lcm{1,2,...,n} / swinging_factorial(n) = A003418(n) / A056040(n). %C A180000 Characterization: Let e_{p}(m) denote the exponent of the prime p in the prime factorization of m and [.] denote the Iverson bracket, then %C A180000 e_{p}(a(n)) = Sum_{k>=1} [floor(n/p^k) is even]. %C A180000 This implies, among other things, that no prime > floor(n/2) can divide a(n). The prime exponents e_{2}(a(2n)) give Guy Steele's sequence GS(5,3) A080100. %C A180000 Asymptotics: log a(n) ~ n(1 - log 2). It is conjectured that log a(n) ~ n(1 - log 2) + O(n^{1/2+eps}) for all eps > 0. %C A180000 Bounds: A056040(floor(n/3)) <= a(n) <= A056040(floor(n/2)) if n >= 285. %H A180000 Peter Luschny, <a href="/A180000/b180000.txt">Table of n, a(n) for n = 0..1000</a> %H A180000 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011. %F A180000 a(n) = 2^(-n)*Product_{1<=k<=n} A014963(k)*(k/2)^((-1)^k). %p A180000 a := proc(n) local A014963, k; %p A180000 A014963 := proc(n) if n < 2 then 1 else numtheory[factorset](n); %p A180000 if 1 < nops(%) then 1 else op(%) fi fi end; %p A180000 mul(A014963(k)*(k/2)^((-1)^k), k=1..n)/2^n end; %p A180000 # Also: %p A180000 A180000 := proc(n) local lcm, sf; %p A180000 lcm := ilcm(seq(i,i=1..n)); %p A180000 sf := n!/iquo(n,2)!^2; %p A180000 lcm/sf end; %t A180000 a[0] = 1; a[n_] := LCM @@ Range[n] / (n! / Floor[n/2]!^2); Table[a[n], {n, 0, 46}] (* _Jean-François Alcover_, Jul 23 2013 *) %o A180000 (PARI) L=1; X(n)={ ispower(n, , &n);if(isprime(n),n,1); } %o A180000 Y(n)={ a=X(n); b=if(bitand(1,n),a,a*(n/2)^2); L=(b*L)/n; } %o A180000 A180000_list(n)={ L=1; vector(n,m,Y(m)); } \\ for n>0 %o A180000 (Sage) %o A180000 def Exp(m,n) : %o A180000 s = 0; p = m; q = n//p %o A180000 while q > 0 : %o A180000 if is_even(q) : %o A180000 s = s + 1 %o A180000 p = p * m %o A180000 q = n//p %o A180000 return s %o A180000 def A180000(n) : %o A180000 A = [1,1,1,1,2,2,3,3,12] %o A180000 if n < 9 : return A[n] %o A180000 R = []; r = isqrt(n) %o A180000 P = Primes(); p = P.first() %o A180000 while p <= n//2 : %o A180000 if p <= r : R.append(p^Exp(p,n)) %o A180000 elif p <= n//3 : %o A180000 if is_even(n//p) : R.append(p) %o A180000 else : R.append(p) %o A180000 p = P.next(p) %o A180000 return mul(x for x in R) %Y A180000 Cf. A003418, A014963, A056040. %K A180000 nonn %O A180000 0,5 %A A180000 _Peter Luschny_, Aug 17 2010