This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A180001 #41 Feb 16 2025 08:33:12 %S A180001 1,1,1,2,1,9,14,16,7,25,110,9,351,91,295,32,7,27,285,30,630,44,1058, %T A180001 36,250,7,405,1652,1044,60,7,64,495,51,1050,72,4403,76,390,60,7,630, %U A180001 1548,88,7,7,705,96,1470,100,765,195,8109,7,825,7,2052,116,7,19560,915 %N A180001 Eventual period of a single cell in rule 110 cellular automaton in a cyclic universe of width n. %C A180001 The first 21 terms match the most frequent possible outcome (see comment in A332717) with the exception of a(14) which is the second-most frequent. - _Hans Havermann_, Jun 11 2020 %H A180001 Pontus von Brömssen, <a href="/A180001/b180001.txt">Table of n, a(n) for n = 1..1000</a> %H A180001 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule110.html">Rule 110</a> %H A180001 <a href="http://oeis.org/index/Ce#cell">Index entries for sequences related to cellular automata</a> %e A180001 For n=4, the evolution of a single cell is: %e A180001 0001 %e A180001 0011 %e A180001 0111 <--= period starts %e A180001 1101 %e A180001 0111 <--= again start of period %e A180001 etc, so a(4)=2. %t A180001 a[n_] := -Subtract @@ %t A180001 Flatten[Map[Position[#, #[[-1]]] &, %t A180001 NestWhileList[CellularAutomaton[110], %t A180001 Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]] %o A180001 (Sage) %o A180001 def A180001(n): %o A180001 def bit(x,i): return (x >> i) & 1 %o A180001 rulemap = dict((tuple(bit(i,k) for k in reversed(range(3))), bit(110,i)) for i in range(8)) %o A180001 def neighbours(d, i): return tuple(d[k % n] for k in [i-1..i+1]) %o A180001 v = [0]*n; v[-1] = 1; %o A180001 history = [v] %o A180001 while True: %o A180001 v2 = [rulemap[neighbours(history[-1], i)] for i in range(n)] %o A180001 if v2 in history: return len(history)-history.index(v2) %o A180001 history.append(v2) # _D. S. McNeil_, Jan 15 2011 %Y A180001 Cf. A085587, A334496, A334497, A332717, A334499-A334515. %K A180001 nonn %O A180001 1,4 %A A180001 _Ben Branman_, Jan 13 2011 %E A180001 More terms from _Alois P. Heinz_, Jan 14 2011